7,402 research outputs found

    The radio core and jet in the broad absorption line quasar PG 1700+518

    Full text link
    The blue-shifted broad absorption lines (BAL) or troughs are observed in Active Galactic Nuclei (AGNs) when our line of sight is intercepted by a high speed outflow (wind), likely originating in the accretion disc. The outflow or wind can shed light on the internal structure obscured by the AGN torus. Recently, it has been shown that this outflow is rotating in the BAL quasar PG 1700+518, further supporting the accretion disc origin of the wind. With the purpose of giving independent constraints on the wind geometry, we performed high-resolution European VLBI Network (EVN) observations at 1.6 GHz in 2010. Combining the VLBI (Very Long Baseline Interferometry) results with the Very Large Array (VLA) archival data at 8.4 GHz, we present its jet structure on scales of parsec (pc) to kiloparsec (kpc) for the first time. The source shows two distinct jet features in East-West direction with a separation of around 4 kpc. The Eastern feature, which has so far been assumed to hide the core, is a kpc-scale hot spot, which is completely resolved out in the EVN image. In the western jet feature, we find a compact jet component, which pinpoints the position of the central black hole in the galaxy. Jet components on both sides of the core are additionally detected in the Northwest-Southeast direction, and they show a symmetric morphology on scale of <1 kpc. This two-sided jet feature is not common in the known BAL quasars and indicates that the jet axis is far away from the line of sight. Furthermore, it is nearly parallel to the scattering plane revealed earlier by optical polarimetry. By analogy to polar-scattered Seyfert 1 galaxies, we conclude that the jet likely has a viewing angle around 45 degree. The analogy is further supported by the recent report of significant cold absorption in the soft X-rays, a nearly unique feature to polar-scattered Seyfert galaxies.Comment: Accepted for publication in MNRAS Letters, 5 pages, 1 figure

    Bacterial dissolution of fluorapatite as a possible source of elevated dissolved phosphate in the environment

    Get PDF
    In order to understand the contribution of geogenic phosphorus to lake eutrophication, we have investigated the rate and extent of fluorapatite dissolution in the presence of two common soil bacteria (Pantoea agglomerans and Bacillus megaterium) at T = 25 °C for 26 days. The release of calcium (Ca), phosphorus (P), and rare earth elements (REE) under biotic and abiotic conditions was compared to investigate the effect of microorganism on apatite dissolution. The release of Ca and P was enhanced under the influence of bacteria. Apatite dissolution rates obtained from solution Ca concentration in the biotic reactors increased above error compared with abiotic controls. Chemical analysis of biomass showed that bacteria scavenged Ca, P, and REE during their growth, which lowered their fluid concentrations, leading to apparent lower release rates. The temporal evolution of pH in the reactors reflected the balance of apatite weathering, solution reactions, bacterial metabolism, and potentially secondary precipitation, which was implied in the variety of REE patterns in the biotic and abiotic reactors. Light rare earth elements (LREE) were preferentially adsorbed to cell surfaces, whereas heavy rare earth elements (HREE) were retained in the fluid phase. Decoupling of LREE and HREE could possibly be due to preferential release of HREE from apatite or selective secondary precipitation of LREE enriched phosphates, especially in the presence of bacteria. When corrected for intracellular concentrations, both biotic reactors showed high P and REE release compared with the abiotic control. We speculate that lack of this correction explains the conflicting findings about the role of bacteria in mineral weathering rates. The observation that bacteria enhance the release rate of P and REE from apatite could account for some of the phosphorus burden and metal pollution in aquatic environments

    Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7

    Get PDF
    The crystal structures of zeolitic imidazolate framework 7 (ZIF-7) under various CO2 pressures were studied by high-resolution neutron powder diffraction. CO2 adsorption in ZIF-7 is visualised and demonstrated to be primarily controlled by the benzimidazolate ligands via a gate-opening mechanism. Our results highlight the importance of pressure on the CO2 adsorption and the related structural framework responses in ZIF-7

    Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion

    Get PDF
    In this paper, an averaging principle for multidimensional, time dependent, stochastic differential equations (SDEs) driven by fractional Brownian motion and standard Brownian motion was established. We combined the pathwise approach with the Itˆo stochastic calculus to handle both types of integrals involved and proved that the original SDEs can be approximated by averaged SDEs in the manner of mean square convergence and of convergence in probability, respectively

    Source-Frequency Phase-Referencing Observation of AGNs with KaVA Using Simultaneous Dual-Frequency Receiving

    Full text link
    The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dual-frequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.Comment: 8 pages, 6 figures, Published in JKA

    Function of bidirectional sensitivity in the otolith organs established by transcription factor Emx2

    Get PDF
    Otolith organs of the inner ear are innervated by two parallel afferent projections to the brainstem and cerebellum. These innervations were proposed to segregate across the line of polarity reversal (LPR) within each otolith organ, which divides the organ into two regions of hair cells (HC) with opposite stereociliary orientation. The relationship and functional significance of these anatomical features are not known.Here, we show regional expression of Emx2 in otolith organs, which establishes LPR, mediates the neuronal segregation across LPR and constitutes the bidirectional sensitivity function. Conditional knockout (cKO) of Emx2 in HCs lacks LPR. Tmie cKO, in which mechanotransduction was abolished selectively in HCs within the Emx2 expression domain also lacks bidirectional sensitivity. Analyses of both mutants indicate that LPR is specifically required formice to swimcomfortably and to traverse a balance beam efficiently, but LPR is not required formice to stay on a rotating rod

    Silicon-based single quantum dot emission in the telecoms C‑band

    Get PDF
    We report the observation of single quantum dot (QD) emission in the telecoms C-band (1530−1565 nm) from an InAs QD structure grown on a Si substrate. A large red-shift of the emission is achieved by capping InAs QDs with a thin GaAsSb layer. Sharp lines, representing emission from single QDs, are observed out to wavelengths as long as 1540 nm. Comparison is made to the optical properties of a nominally identical active region structure grown on a GaAs substrate. Single QD emission from a Si-based system at 1500 nm has the potential for single photon sources compatible with current optical fibers and reduced complexity of integration with drive electronics

    Spontaneous Magnetization of Composite Fermions

    Full text link
    It is argued that the composite fermion liquid is a promising candidate for an observation of the elusive, interaction driven magnetization first proposed by Bloch seven decades ago. In analogy to what is theoretically believed to be the case for the idealized electron gas in zero magnetic field, this spontaneously broken symmetry phase is predicted to occur prior to a transition into the Wigner crystal.Comment: 5 pages, 4 figure
    • …
    corecore