169 research outputs found
Exploring the regulatory mechanism of intestinal flora based on PD-1 receptor/ligand targeted cancer immunotherapy
Serving as a pivotal immunotherapeutic approach against tumors, anti-PD-1/PD-L1 therapy amplifies the immune cells’ capability to eliminate tumors by obstructing the interaction between PD-1 and PD-L1. Research indicates that immune checkpoint inhibitors are effective when a patient’s gut harbors unique beneficial bacteria. As such, it has further been revealed that the gut microbiome influences tumor development and the efficacy of cancer treatments, with metabolites produced by the microbiome playing a regulatory role in the antitumor efficacy of Immune checkpoint inhibitors(ICBs). This article discusses the mechanism of anti-PD-1 immunotherapy and the role of intestinal flora in immune regulation. This review focuses on the modulation of intestinal flora in the context of PD-1 immunotherapy, which may offer a new avenue for combination therapy in tumor immunotherapy
Simple spatial scaling rules behind complex cities
Although most of wealth and innovation have been the result of human interaction and cooperation, we are not yet able to quantitatively predict the spatial distributions of three main elements of cities: population, roads, and socioeconomic interactions. By a simple model mainly based on spatial attraction and matching growth mechanisms, we reveal that the spatial scaling rules of these three elements are in a consistent framework, which allows us to use any single observation to infer the others. All numerical and theoretical results are consistent with empirical data from ten representative cities. In addition, our model can also provide a general explanation of the origins of the universal super- and sub-linear aggregate scaling laws and accurately predict kilometre-level socioeconomic activity. Our work opens a new avenue for uncovering the evolution of cities in terms of the interplay among urban elements, and it has a broad range of applications.This work is supported by the National Natural Science Foundation of China under Grant Nos. 61673070, 61773069, 71731002 and the Fundamental Research Funds for the Central Universities with the Grant No. 2015KJJCB13, and also partially supported by NSF Grants PHY-1505000, CMMI-1125290, CHE-1213217, DTRA Grant HDTRA1-14-1-0017, DOE Grant DE-AC07-05Id14517. J.Z. acknowledges discussions with Prof. Bettencourt of the Santa Fe Institute, Dr. Lingfei Wu of Arizona State University, and Profs. Yougui Wang and Qinghua Chen of Beijing Normal University. R.L. acknowledges helpful discussions with and comments from Dr. Remi Louf in CASA, University College London, Dr. Longfeng Zhao from Huazhong (Central China) Normal University, and selfless help from Prof. Yougui Wang. R.L. is also supported by the Chinese Scholarship Council. (61673070 - National Natural Science Foundation of China; 61773069 - National Natural Science Foundation of China; 71731002 - National Natural Science Foundation of China; 2015KJJCB13 - Fundamental Research Funds for the Central Universities; PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - DTRA Grant; DE-AC07-05Id14517 - DOE; Chinese Scholarship Council)Published versio
Neuroplasticity of Speech-in-Noise Processing in Older Adults Assessed by Functional Near-Infrared Spectroscopy (fNIRS)
Functional near-infrared spectroscopy (fNIRS), a non-invasive optical neuroimaging technique that is portable and acoustically silent, has become a promising tool for evaluating auditory brain functions in hearing-vulnerable individuals. This study, for the first time, used fNIRS to evaluate neuroplasticity of speech-in-noise processing in older adults. Ten older adults, most of whom had moderate-to-mild hearing loss, participated in a 4-week speech-in-noise training. Their speech-in-noise performances and fNIRS brain responses to speech (auditory sentences in noise), non-speech (spectrally-rotated speech in noise) and visual (flashing chequerboards) stimuli were evaluated pre- (T0) and post-training (immediately after training, T1; and after a 4-week retention, T2). Behaviourally, speech-in-noise performances were improved after retention (T2 vs. T0) but not immediately after training (T1 vs. T0). Neurally, we intriguingly found brain responses to speech vs. non-speech decreased significantly in the left auditory cortex after retention (T2 vs. T0 and T2 vs. T1) for which we interpret as suppressed processing of background noise during speech listening alongside the significant behavioural improvements. Meanwhile, functional connectivity within and between multiple regions of temporal, parietal and frontal lobes was significantly enhanced in the speech condition after retention (T2 vs. T0). We also found neural changes before the emergence of significant behavioural improvements. Compared to pre-training, responses to speech vs. non-speech in the left frontal/prefrontal cortex were decreased significantly both immediately after training (T1 vs. T0) and retention (T2 vs. T0), reflecting possible alleviation of listening efforts. Finally, connectivity was significantly decreased between auditory and higher-level non-auditory (parietal and frontal) cortices in response to visual stimuli immediately after training (T1 vs. T0), indicating decreased cross-modal takeover of speech-related regions during visual processing. The results thus showed that neuroplasticity can be observed not only at the same time with, but also before, behavioural changes in speech-in-noise perception. To our knowledge, this is the first fNIRS study to evaluate speech-based auditory neuroplasticity in older adults. It thus provides important implications for current research by illustrating the promises of detecting neuroplasticity using fNIRS in hearing-vulnerable individuals
Towards superior biopolymer gels by enabling interpenetrating network structures:A review on types, applications, and gelation strategies
Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.</p
The effects of fear of missing out on social media posting preferences
Purpose: Fear of missing out (FOMO) has become a common phenomenon on social media. This study aims to examine how FOMO influences consumer preferences for posting about identity-relevant products on social media. Design/methodology/approach: In this research, three studies were conducted to explore the effects of FOMO in different real-life situations. Study 1 was conducted in a laboratory setting in China. Study 2 includes two experiments, one that was conducted in China and one in the USA. Study 3 was conducted in a workplace setting in China. Findings: The results of Study 1 indicate that when consumers experience FOMO, they prefer to post about identity-relevant (vs functional) products to a greater extent than usual. Study 2 examines the role of self-esteem and identifies self-presentation and the avoidance of social attention as underlying mechanisms. Thus, consumers with high (or low) self-esteem tend to be more motivated to present themselves positively (or to avoid social attention) when experiencing FOMO. Furthermore, Study 3 reveals the moderating role of supportive interactions; that is, the interaction between FOMO and consumer self-esteem is most likely to exert an effect when consumers receive many supportive interactions. Research limitations/implications: This research demonstrates that posting identity-relevant content on social media is a coping strategy that individuals may adopt when experiencing FOMO. Moreover, self-esteem can predict how individuals cope with FOMO by identifying self-presentation and avoidance of social attention as the mechanisms underlying effects. Although this research attempts to avoid interference from other factors between in the relationship FOMO and the control conditions, it seems possible that more socially relevant information may be presented in the FOMO condition. Practical implications: Because FOMO can be manipulated and posting types can be predicted, this research provides important implications for brands on how to create or post content to better engage consumers. Originality/value: This research supports the role of FOMO as a driver of on consumer posting preferences on social media.Peer reviewe
Verbal Creativity Is Correlated With the Dynamic Reconfiguration of Brain Networks in the Resting State
Creativity is the foundation of human culture. All inventions and innovations in history rely upon us to break with the traditional thinking and create something novel. A number of neuroimaging studies have explored the neural mechanism of creativity. However, a majority of researches have focused only on the stationary functional connectivity in resting-state fMRI and task-related fMRI, neglecting the dynamic variation of brain networks. Here, we used dynamic network analysis to investigate the relation between the dynamic reorganization of brain networks and verbal creativity in 370 healthy subjects. We found that the integration of the left lingual gyrus and left middle temporal gyrus (MTG) in default mode network (DMN) and the integration of the DMN and cerebellum, frontoparietal task control network (FPTC) and auditory network (Aud) showed positive correlation with verbal creativity performance. In addition, the recruitment of the bilateral postcentral gyrus from the sensory/somatomotor network (SMN) and the recruitment of the SMN in general displayed a significant correlation with verbal creativity scores. Taken together, these results suggested that the dynamic reorganization among the brain networks involved multiple cognitive processes, such as memory retrieval, imaginative process, cognitive control – these are all important for verbal creativity. These findings provided direct evidence that verbal creativity was related to the dynamic variation of brain mechanism during resting-state, extending past research on the neural mechanism of creativity. Meanwhile, these results bought about new perspectives for verbal creative training and rehabilitation training of depression
- …