929 research outputs found

    JALAD: Joint Accuracy- and Latency-Aware Deep Structure Decoupling for Edge-Cloud Execution

    Full text link
    Recent years have witnessed a rapid growth of deep-network based services and applications. A practical and critical problem thus has emerged: how to effectively deploy the deep neural network models such that they can be executed efficiently. Conventional cloud-based approaches usually run the deep models in data center servers, causing large latency because a significant amount of data has to be transferred from the edge of network to the data center. In this paper, we propose JALAD, a joint accuracy- and latency-aware execution framework, which decouples a deep neural network so that a part of it will run at edge devices and the other part inside the conventional cloud, while only a minimum amount of data has to be transferred between them. Though the idea seems straightforward, we are facing challenges including i) how to find the best partition of a deep structure; ii) how to deploy the component at an edge device that only has limited computation power; and iii) how to minimize the overall execution latency. Our answers to these questions are a set of strategies in JALAD, including 1) A normalization based in-layer data compression strategy by jointly considering compression rate and model accuracy; 2) A latency-aware deep decoupling strategy to minimize the overall execution latency; and 3) An edge-cloud structure adaptation strategy that dynamically changes the decoupling for different network conditions. Experiments demonstrate that our solution can significantly reduce the execution latency: it speeds up the overall inference execution with a guaranteed model accuracy loss.Comment: conference, copyright transfered to IEE

    A Stochastic Adjustment Strategy for Coordination Process in Distributed Networks

    Get PDF
    Cloud computing has become a popular basis that integrated into amount of large platforms to support applications (e.g., multimedia, vehicle traffic, and IoT). It is critical to focus on coordinating the part of these applications that execute in the cloud to provide reliable, scalable and available services. Nevertheless, the problem of optimally coordinating the applications is rarely addressed. In this paper, we develop a stochastic model to analyze the fundamental characteristics that occur in ZooKeeper during the coordination process. The model primarily addresses two aspects: demands of followers and the load of a leader. Then, we derive the optimal strategy for provision with deployment of coordinated servers to achieve load balancing based on various factors (e.g. server capacity and network load), so that the overall network performance is optimized. We evaluate our algorithm under realistic settings and reveal the trend of factors such as CPU, memory utilization and network bandwidth with the increasing number of requests. We propose the algorithm that considers how many servers should be deployed and when. Our results demonstrate that the strategy guarantees the performance by making suitable deployment adjustment

    A web workbench system for the Slurm cluster at IHEP

    Get PDF
    Slurm REST APIs are released since version 20.02. With those REST APIs one can interact with slurmctld and slurmdbd daemons in a REST- ful way. As a result, job submission and cluster status query can be achieved with a web system. To take advantage of Slurm REST APIs, a web workbench system is developed for the Slurm cluster at IHEP. The workbench system con- sists with four subsystems including dashboard, tomato, jasmine and cosmos. The dashboard subsystem is used to display cluster status including nodes and jobs. The tomato subsystem is developed to submit special HTCondor glidein jobs in the Slurm cluster. The jasmine system is used to generate and submit batch jobs based on workload parameters. The cosmos subsystem is an ac- counting system, which not only generates statistical charts but also provides REST APIs to query jobs. This paper presents design and implementation de- tails of the Slurm workbench. With the help of workbench, administrators and researchers can get their work done in an effective way

    Towards Identifying Social Bias in Dialog Systems: Frame, Datasets, and Benchmarks

    Full text link
    The research of open-domain dialog systems has been greatly prospered by neural models trained on large-scale corpora, however, such corpora often introduce various safety problems (e.g., offensive languages, biases, and toxic behaviors) that significantly hinder the deployment of dialog systems in practice. Among all these unsafe issues, addressing social bias is more complex as its negative impact on marginalized populations is usually expressed implicitly, thus requiring normative reasoning and rigorous analysis. In this paper, we focus our investigation on social bias detection of dialog safety problems. We first propose a novel Dial-Bias Frame for analyzing the social bias in conversations pragmatically, which considers more comprehensive bias-related analyses rather than simple dichotomy annotations. Based on the proposed framework, we further introduce CDail-Bias Dataset that, to our knowledge, is the first well-annotated Chinese social bias dialog dataset. In addition, we establish several dialog bias detection benchmarks at different label granularities and input types (utterance-level and context-level). We show that the proposed in-depth analyses together with these benchmarks in our Dial-Bias Frame are necessary and essential to bias detection tasks and can benefit building safe dialog systems in practice

    Potential Game Based Distributed IoV Service Offloading With Graph Attention Networks in Mobile Edge Computing

    Get PDF
    Vehicular services aim to provide smart and timely services (e.g., collision warning) by taking the advantage of recent advances in artificial intelligence and employing task offloading techniques in mobile edge computing. In practice, the volume of vehicles in the Internet of Vehicles (IoV) often surges at a single location and renders the edge servers (ESs) severely overloaded, resulting in a very high delay in delivering the services. Therefore, it is of practical importance and urgency to coordinate the resources of ESs with bandwidth allocation for mitigating the occurrence of a spike traffic flow. For this challenge, existing work sought the periodicities of traffic flow by analyzing historical traffic data. However, the changes in traffic flow caused by sudden traffic conditions cannot be obtained from these periodicities. In this paper, we propose a distributed traffic flow forecasting and task offloading approach named TFFTO to optimize the execution time and power consumption in service processing. Specifically, graph attention networks (GATs) are leveraged to forecast future traffic flow in short-term and the traffic volume is utilized to estimate the number of services offloaded to the ESs in the subsequent period. With the estimate, the current load of the ESs is adjusted to ensure that the services can be handled in a timely manner. Potential game theory is adopted to determine the optimal service offloading strategy. Extensive experiments are conducted to evaluate our approach and the results validate our robust performance

    PET-based radiomic feature based on the cross-combination method for predicting the mid-term efficacy and prognosis in high-risk diffuse large B-cell lymphoma patients

    Get PDF
    ObjectivesThis study aims to develop 7×7 machine-learning cross-combinatorial methods for selecting and classifying radiomic features used to construct Radiomics Score (RadScore) of predicting the mid-term efficacy and prognosis in high-risk patients with diffuse large B-cell lymphoma (DLBCL).MethodsRetrospectively, we recruited 177 high-risk DLBCL patients from two medical centers between October 2012 and September 2022 and randomly divided them into a training cohort (n=123) and a validation cohort (n=54). We finally extracted 110 radiomic features along with SUVmax, MTV, and TLG from the baseline PET. The 49 features selection-classification pairs were used to obtain the optimal LASSO-LASSO model with 11 key radiomic features for RadScore. Logistic regression was employed to identify independent RadScore, clinical and PET factors. These models were evaluated using receiver operating characteristic (ROC) curves and calibration curves. Decision curve analysis (DCA) was conducted to assess the predictive power of the models. The prognostic power of RadScore was assessed using cox regression (COX) and Kaplan–Meier plots (KM).Results177 patients (mean age, 63 ± 13 years,129 men) were evaluated. Multivariate analyses showed that gender (OR,2.760; 95%CI:1.196,6.368); p=0.017), B symptoms (OR,4.065; 95%CI:1.837,8.955; p=0.001), SUVmax (OR,2.619; 95%CI:1.107,6.194; p=0.028), and RadScore (OR,7.167; 95%CI:2.815,18.248; p<0.001) independently contributed to the risk factors for predicting mid-term outcome. The AUC values of the combined models in the training and validation groups were 0.846 and 0.724 respectively, outperformed the clinical model (0.714;0.556), PET based model (0.664; 0.589), NCCN-IPI model (0.523;0.406) and IPI model (0.510;0.412) in predicting mid-term treatment outcome. DCA showed that the combined model incorporating RadScore, clinical risk factors, and PET metabolic metrics has optimal net clinical benefit. COX indicated that the high RadScore group had worse prognosis and survival in progression-free survival (PFS) (HR, 2.1737,95%CI: 1.2983, 3.6392) and overall survival (OS) (HR,2.1356,95%CI: 1.2561, 3.6309) compared to the low RadScore group. KM survival analysis also showed the same prognosis prediction as Cox results.ConclusionThe combined model incorporating RadScore, sex, B symptoms and SUVmax demonstrates a significant enhancement in predicting medium-term efficacy and prognosis in high-risk DLBCL patients. RadScore using 7×7 machine learning cross-combinatorial methods for selection and classification holds promise as a potential method for evaluating medium-term treatment outcome and prognosis in high-risk DLBCL patients

    Population genetics, diversity and forensic characteristics of Tai–Kadai-speaking Bouyei revealed by insertion/deletions markers

    Get PDF
    Abstract(#br)China, inhabited by over 1.3 billion people and known for its genetic, cultural and linguistic diversity, is considered to be indispensable for understanding the association between language families and genetic diversity. In order to get a better understanding of the genetic diversity and forensic characteristics of Tai–Kadai-speaking populations in Southwest China, we genotyped 30 insertion/deletion (InDel) markers and amelogenin in 205 individuals from Tai–Kadai-speaking Bouyei people using the Qiagen Investigator DIPplex amplification kit. We carried out a comprehensive population genetic relationship investigation among 14,303 individuals from 84 worldwide populations based on allele frequency correlation and 4907 genotypes of 30 InDels from 36 populations distributed in..

    Genomic Insights Into the Admixture History of Mongolic- and Tungusic-Speaking Populations From Southwestern East Asia

    Get PDF
    As a major part of the modern Trans-Eurasian or Altaic language family, most of the Mongolic and Tungusic languages were mainly spoken in northern China, Mongolia, and southern Siberia, but some were also found in southern China. Previous genetic surveys only focused on the dissection of genetic structure of northern Altaic-speaking populations; however, the ancestral origin and genomic diversification of Mongolic and Tungusic–speaking populations from southwestern East Asia remain poorly understood because of the paucity of high-density sampling and genome-wide data. Here, we generated genome-wide data at nearly 700,000 single-nucleotide polymorphisms (SNPs) in 26 Mongolians and 55 Manchus collected from Guizhou province in southwestern China. We applied principal component analysis (PCA), ADMIXTURE, f statistics, qpWave/qpAdm analysis, qpGraph, TreeMix, Fst, and ALDER to infer the fine-scale population genetic structure and admixture history. We found significant genetic differentiation between northern and southern Mongolic and Tungusic speakers, as one specific genetic cline of Manchu and Mongolian was identified in Guizhou province. Further results from ADMIXTURE and f statistics showed that the studied Guizhou Mongolians and Manchus had a strong genetic affinity with southern East Asians, especially for inland southern East Asians. The qpAdm-based estimates of ancestry admixture proportion demonstrated that Guizhou Mongolians and Manchus people could be modeled as the admixtures of one northern ancestry related to northern Tungusic/Mongolic speakers or Yellow River farmers and one southern ancestry associated with Austronesian, Tai-Kadai, and Austroasiatic speakers. The qpGraph-based phylogeny and neighbor-joining tree further confirmed that Guizhou Manchus and Mongolians derived approximately half of the ancestry from their northern ancestors and the other half from southern Indigenous East Asians. The estimated admixture time ranged from 600 to 1,000 years ago, which further confirmed the admixture events were mediated via the Mongolians Empire expansion during the formation of the Yuan dynasty
    • …
    corecore