299 research outputs found

    Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View

    Full text link
    Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.Comment: Accepted by IEEE Transactions on Signal Processin

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Interference-aware coordinated power allocation in autonomous Wi-Fi environment

    Full text link
    Self-managed access points (APs) with growing intelligence can optimize their own performances but pose potential negative impacts on others without energy ef ciency. In this paper, we focus on modeling the coordinated interaction among interest-independent and self-con gured APs, and conduct the power allocation case study in the autonomous Wi-Fi scenario. Speci cally, we build a `coordination Wi-Fi platform (CWP), a public platform for APs interacting with each other. OpenWrt-based APs in the physical world are mapped to virtual agents (VAs) in CWP, which communicate with each other through a standard request-reply process de ned as AP talk protocol (ATP).With ATP, an active interference measurement methodology is proposed re ecting both in-range interference and hidden terminal interference, and the Nash bargaining-based power control is further formulated for interference reductions. CWP is deployed in a real of ce environment, where coordination interactions between VAs can bring a maximum 40-Mb/s throughput improvement with the Nash bargaining-based power control in the multi-AP experiments

    Network association strategies for an energy harvesting aided super-wifi network relying on measured solar activity

    No full text
    The super-WiFi network concept has been proposed for nationwide Internet access in the United States. However, the traditional mains power supply is not necessarily ubiquitous in this large-scale wireless network. Furthermore, the non-uniform geographic distribution of both the based-stations and the tele-traffic requires carefully considered user association. Relying on the rapidly developing energy harvesting techniques, we focus our attention on the sophisticated access point (AP) selection strategies conceived for the energy harvesting aided super-WiFi network. Explicitly, we propose a solar radiation model relying on the historical solar activity observation data provided by the University of Queensland, followed by a beneficial radiation parameter estimation method. Furthermore, we formulate both a Markov decision process (MDP) as well as a partially observable MDP (POMDP) for supporting the users’ decisions on beneficially selecting APs. Moreover, we conceive iterative algorithms for implementing our MDP and POMDP-based AP-selection, respectively. Finally, our performance results are benchmarked against a range of traditional decision-making algorithms
    • …
    corecore