10,732 research outputs found

    Limit theorems for sample eigenvalues in a generalized spiked population model

    Get PDF
    In the spiked population model introduced by Johnstone (2001),the population covariance matrix has all its eigenvalues equal to unit except for a few fixed eigenvalues (spikes). The question is to quantify the effect of the perturbation caused by the spike eigenvalues. Baik and Silverstein (2006) establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. In a recent work (Bai and Yao, 2008), we have provided the limiting distributions for these extreme sample eigenvalues. In this paper, we extend this theory to a {\em generalized} spiked population model where the base population covariance matrix is arbitrary, instead of the identity matrix as in Johnstone's case. New mathematical tools are introduced for establishing the almost sure convergence of the sample eigenvalues generated by the spikes.Comment: 24 pages; 4 figure

    Spatial modelling for mixed-state observations

    Full text link
    In several application fields like daily pluviometry data modelling, or motion analysis from image sequences, observations contain two components of different nature. A first part is made with discrete values accounting for some symbolic information and a second part records a continuous (real-valued) measurement. We call such type of observations "mixed-state observations". This paper introduces spatial models suited for the analysis of these kinds of data. We consider multi-parameter auto-models whose local conditional distributions belong to a mixed state exponential family. Specific examples with exponential distributions are detailed, and we present some experimental results for modelling motion measurements from video sequences.Comment: Published in at http://dx.doi.org/10.1214/08-EJS173 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On determining the number of spikes in a high-dimensional spiked population model

    Full text link
    In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). Determining the number of spikes is a fundamental problem which appears in many scientific fields, including signal processing (linear mixture model) or economics (factor model). Several recent papers studied the asymptotic behavior of the eigenvalues of the sample covariance matrix (sample eigenvalues) when the dimension of the observations and the sample size both grow to infinity so that their ratio converges to a positive constant. Using these results, we propose a new estimator based on the difference between two consecutive sample eigenvalues

    Central limit theorems for eigenvalues in a spiked population model

    Get PDF
    In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. This paper establishes the limiting distributions of these extreme sample eigenvalues. As another important result of the paper, we provide a central limit theorem on random sesquilinear forms.Comment: Published in at http://dx.doi.org/10.1214/07-AIHP118 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org

    High-dimensional limits of eigenvalue distributions for general Wishart process

    Get PDF
    In this article, we obtain an equation for the high-dimensional limit measure of eigenvalues of generalized Wishart processes, and the results is extended to random particle systems that generalize SDEs of eigenvalues. We also introduce a new set of conditions on the coefficient matrices for the existence and uniqueness of a strong solution for the SDEs of eigenvalues. The equation of the limit measure is further discussed assuming self-similarity on the eigenvalues.Comment: 28 page

    Tail of a linear diffusion with Markov switching

    Get PDF
    Let Y be an Ornstein-Uhlenbeck diffusion governed by a stationary and ergodic Markov jump process X: dY_t=a(X_t)Y_t dt+\sigma(X_t) dW_t, Y_0=y_0. Ergodicity conditions for Y have been obtained. Here we investigate the tail propriety of the stationary distribution of this model. A characterization of either heavy or light tail case is established. The method is based on a renewal theorem for systems of equations with distributions on R.Comment: Published at http://dx.doi.org/10.1214/105051604000000828 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore