503 research outputs found

    Validation and interpretation of three-dimensional configuration of a magnetic cloud flux rope

    Full text link
    One "strong" magnetic cloud (MC) with the magnetic field magnitude reaching \sim 40 nT at 1 au during 2012 June 16-17 is examined in association with a pre-existing magnetic flux rope (MFR) identified on the Sun. The MC is characterized by a quasi-three dimensional (3D) flux rope model based on in situ measurements from the Wind spacecraft. The magnetic flux contents and other parameters are quantified. In addition, a correlative study with the corresponding measurements of the same structure crossed by the Venus Express (VEX) spacecraft at a heliocentric distance 0.7 au and with an angular separation 6\sim 6^\circ in longitude is performed to validate the MC modeling results. The spatial variation between the Wind and VEX magnetic field measurements is attributed to the 3D configuration of the structure as featured by a knotted bundle of flux. The comparison of the magnetic flux contents between the MC and the source region on the Sun indicates that the 3D reconnection process accompanying an M1.9 flare may correspond to the magnetic reconnection between the field lines of the pre-existing MFR rooted in the opposite polarity footpoints. Such a process reduces the amount of the axial magnetic flux in the erupted flux rope, by approximately 50\%, in this case.Comment: Submitted to Ap

    A genuine maximally seven-qubit entangled state

    Full text link
    Contrary to A.Borras et al.'s [1] conjecture, a genuine maximally seven-qubit entangled state is presented. We find a seven-qubit state whose marginal density matrices for subsystems of 1,2- qubits are all completely mixed and for subsystems of 3-qubits is almost completely mixed

    Ion‐driven instabilities in the solar wind: Wind observations of 19 March 2005

    Full text link
    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. But it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft‐frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized by two components: a more dense, slower core and a less dense, faster beam. Observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén‐cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right‐hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.Key PointsIon temperature anisotropies and proton beam/core flows are sources of enhanced field observationsFor two events Alfven‐cyclotron modes are most unstableFor three events magnetosonic modes are most unstablePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/1/jgra52322.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137412/2/jgra52322_am.pd

    Ultrastable actinide endohedral borospherenes.

    Get PDF
    Since the discovery of the first all-boron fullerenes B40-/0, metal-doped borospherenes have received extensive attention. So far, in spite of theoretical efforts on metalloborospherenes, the feasibility of actinide analogues remains minimally explored. Here we report a series of actinide borospherenes AnBn (An = U, Th; n = 36, 38, and 40) using DFT-PBE0 calculations. All the AnBn complexes are found to possess endohedral structures (An@Bn) as the global minima. In particular, U@B36 (C2h, 3Ag) and Th@B38 (D2h, 1Ag) exhibit nearly ideal endohedral borospherene structures. The C2h U@B36 and D2h Th@B38 complexes are predicted to be highly robust both thermodynamically and dynamically. In addition to the actinide size match to the cage, the covalent character of the metal-cage bonding in U@B36 and Th@B38 affords further stabilization. Bonding analysis indicates that U@B36 and Th@B38 can be qualified as 32-electron systems, and Th@B38 exhibits 3D aromaticity with σ plus π double delocalization bonding. The results demonstrate that doping with appropriate actinide atoms is promising to stabilize diverse borospherenes, and may provide routes for borospherene modification and functionalization

    Modeling FETCH Observations of 2005 May 13 CME

    Full text link
    This paper evaluates the quality of CME analysis that has been undertaken with the rare Faraday rotation observation of an eruption. Exploring the capability of the FETCH instrument hosted on the MOST mission, a four-satellite Faraday rotation radio sounding instrument deployed between the Earth and the Sun, we discuss the opportunities and challenges to improving the current analysis approaches.Comment: 33 pages, 24 figure

    Tracking a beam of electrons from the low solar corona into interplanetary space with the Low Frequency Array, Parker Solar Probe and 1 au spacecraft

    Full text link
    Type III radio bursts are the result of plasma emission from mildly relativistic electron beams propagating from the low solar corona into the heliosphere where they can eventually be detected in situ if they align with the location of a heliospheric spacecraft. Here we observe a type III radio burst from 0.1-16 MHz using the Parker Solar Probe (PSP) FIELDS Radio Frequency Spectrometer (RFS), and from 10-80 MHz using the Low Frequency Array (LOFAR). This event was not associated with any detectable flare activity but was part of an ongoing noise storm that occurred during PSP encounter 2. A deprojection of the LOFAR radio sources into 3D space shows that the type III radio burst sources were located on open magnetic field from 1.6-3 RR_\odot and originated from a specific active region near the East limb. Combining PSP/RFS observations with WIND/WAVES and Solar Terrestrial Relations Observatory (STEREO)/WAVES, we reconstruct the type III radio source trajectory in the heliosphere interior to PSP's position, assuming ecliptic confinement. An energetic electron enhancement is subsequently detected in situ at the STEREO-A spacecraft at compatible times although the onset and duration suggests the individual burst contributes a subset of the enhancement. This work shows relatively small-scale flux emergence in the corona can cause the injection of electron beams from the low corona into the heliosphere, without needing a strong solar flare. The complementary nature of combined ground and space-based radio observations, especially in the era of PSP, is also clearly highlighted by this study.Comment: 17 pages, 10 figures, Submitted to ApJ, April 15 202

    Spontaneous Mirror Parity Violation, Common Origin of Matter and Dark Matter, and the LHC Signatures

    Full text link
    Existence of a mirror world in the universe is a fundamental way to restore the observed parity violation in weak interactions and provides the lightest mirror nucleon as a unique GeV-scale dark matter particle candidate. The visible and mirror worlds share the same spacetime of the universe and are connected by a unique space-inversion symmetry -- the mirror parity (P). We conjecture that the mirror parity is respected by the fundamental interaction Lagrangian, and study its spontaneous breaking from minimizing the Higgs vacuum potential. The domain wall problem is resolved by a unique soft breaking linear-term from the P-odd weak-singlet Higgs field. We also derive constraint from the Big-Bang nucleosynthesis. We then analyze the neutrino seesaw for both visible and mirror worlds, and demonstrate that the desired amounts of visible matter and mirror dark matter in the universe arise from a common origin of CP violation in the neutrino sector via leptogenesis. We derive the Higgs mass-spectrum and Higgs couplings with gauge bosons and fermions. We show their consistency with the direct Higgs searches and the indirect precision constraints. We further study the distinctive signatures of the predicted non-standard Higgs bosons at the LHC. Finally, we analyze the direct detections of GeV-scale mirror dark matter by TEXONO and CDEX experiments.Comment: 55pp. PRD final version. Only minor refinements (including to comment on the latest LHC Higgs searches in Sec.5 and estimate abundances of mirror dark matter particles in Sec.6); more references adde

    A game prototype for understanding the safety issues of a lifeboat launch

    Get PDF
    © 2018 The Author(s) Novel, advanced game techniques provide us with new possibilities to mimic a complicated training process, with the added benefit of enhanced safety. In this paper, we design and implement a 3D game with the support of virtual reality equipment which imitates the process of a lifeboat launch, involving both tractor manoeuvres and boat operations. It is a complex but vital process which can save lives at sea but also has many potential hazards. The primary objective of the game is to allow novices to better understand the sequence of the operations and manage the potential risks which may occur during the launch process. Additionally, the game has been promoted to the general public for educational purposes and to raise awareness of the safety issues involved. The key modules of the game are designed based on physical simulations to give the players enhanced plausible cognition and enjoyable interaction. We conducted two case studies for the two purposes of the games: one for training with volunteers without launching experience and the other for public awareness of the potential hazards with young children. The game is proven to be very promising for future professional training, and it serves the educational purpose of awareness of the safety issues for general public while being entertaining
    corecore