25,226 research outputs found
Single-photon transport in a one dimentional waveguide coupling to a hybrid atom-optomechanical system
We explore theoretically the single-photon transport in a single-mode
waveguide that is coupled to a hybrid atom-optomechanical system in a strong
optomechanical coupling regime. Using a full quantum real-space approach,
transmission and reflection coefficients of the propagating single-photon in
the waveguide are ob- tained. The influences of atom-cavity detuning and the
dissipation of atom on the transport are also studied. Intriguingly, the
obtained spectral features can reveal the strong light-matter interaction in
this hybrid system.Comment: 7pages, 8figure
Relaxed 2-D Principal Component Analysis by Norm for Face Recognition
A relaxed two dimensional principal component analysis (R2DPCA) approach is
proposed for face recognition. Different to the 2DPCA, 2DPCA- and G2DPCA,
the R2DPCA utilizes the label information (if known) of training samples to
calculate a relaxation vector and presents a weight to each subset of training
data. A new relaxed scatter matrix is defined and the computed projection axes
are able to increase the accuracy of face recognition. The optimal -norms
are selected in a reasonable range. Numerical experiments on practical face
databased indicate that the R2DPCA has high generalization ability and can
achieve a higher recognition rate than state-of-the-art methods.Comment: 19 pages, 11 figure
On the Convergence of Ritz Pairs and Refined Ritz Vectors for Quadratic Eigenvalue Problems
For a given subspace, the Rayleigh-Ritz method projects the large quadratic
eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar
to the Rayleigh-Ritz method for the linear eigenvalue problem, the
Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP
with respect to the projection subspace. We analyze the convergence of the
method when the angle between the subspace and the desired eigenvector
converges to zero. We prove that there is a Ritz value that converges to the
desired eigenvalue unconditionally but the Ritz vector converges conditionally
and may fail to converge. To remedy the drawback of possible non-convergence of
the Ritz vector, we propose a refined Ritz vector that is mathematically
different from the Ritz vector and is proved to converge unconditionally. We
construct examples to illustrate our theory.Comment: 20 page
Tunable one-dimensional microwave emissions from cyclic-transition three-level atoms
By strongly driving a cyclic-transition three-level artificial atom,
demonstrated by such as a flux-based superconducting circuit, we show that
coherent microwave signals can be excited along a coupled one-dimensional
transmission line. Typically, the intensity of the generated microwave is
tunable via properly adjusting the Rabi frequencies of the applied
strong-driving fields or introducing a probe field with the same frequency. In
practice, the system proposed here could work as an on-chip quantum device with
controllable atom-photon interaction to implement a total-reflecting mirror or
switch for the propagating probe field.Comment: 4 pages, 5 figure
A Statistical Study of GRB X-ray Flares: Evidence of Ubiquitous Bulk Acceleration in the Emission Region
When emission in a conical relativistic jet ceases abruptly (or decays
sharply), the observed decay light curve is controlled by the high-latitude
"curvature effect". Recently, Uhm & Zhang found that the decay slopes of three
GRB X-ray flares are steeper than what the standard model predicts. This
requires bulk acceleration of the emission region, which is consistent with a
Poynting-flux-dominated outflow. In this paper, we systematically analyze a
sample of 85 bright X-ray flares detected in 63 Swift GRBs, and investigate the
relationship between the temporal decay index and spectral index
during the steep decay phase of these flares. The value
depends on the choice of the zero time point . We adopt two methods.
"Method I" takes as the first rising data point of each flare, and is
the most conservative approach. We find that at 99.9% condifence level 56/85
flares have decay slopes steeper than the simplest curvature effect prediction,
and therefore, are in the acceleration regime. "Method II" extrapolates the
rising light curve of each flare backwards until the flux density is three
orders of magnitude lower than the peak flux density, and defines the
corresponding time as the time zero point (t_0^II). We find that 74/85 flares
fall into the acceleration regime at 99.9% condifence level. This suggests that
bulk acceleration is common, may be even ubiquitous among X-ray flares,
pointing towards a Poynting-flux-dominated jet composition for these events.Comment: 68 pages, 6 figures, 2 tables, ApJS, in pres
Gain without inversion in quantum systems with broken parities
For a quantum system with broken parity symmetry, selection rules can not
hold and cyclic transition structures are generated. With these
loop-transitions we discuss how to achieve inversionless gain of the probe
field by properly setting the control and auxiliary fields. Possible
implementations of our generic proposal with specific physical objects with
broken parities, e.g., superconducting circuits and chiral molecules, are also
discussed.Comment: 12 pages, 4 figure
Recommended from our members
MHD-RLC discharge model and the efficiency characteristics of plasma synthetic jet actuator
Major factors affecting efficiency of plasma synthetic jet actuator (PSJA) are analyzed based on a new discharge model in the present paper. The model couples the magnetohydrodynamics (MHD) equations with the resistor–inductor–capacitor (RLC) equations, and is able to resolve the time-dependent voltage fall on the sheath region and arc region, which is critical in analyzing energy loss in the heating process. This model is integrated into the commercial CFD software by a two-equation method. Results show that in a typical capacitive discharge at microsecond scale, the maximum energy loss is the sheath energy loss, which accounts for nearly half of the discharge energy, while the radiation loss is less than 5%. The discharge time is an important parameter for the PSJA efficiency. A short discharge time less than 1 μs will effectively reduce the sheath energy loss, while a longer discharge time will decrease the thermodynamic efficiency
- …