8,870 research outputs found
Phenological response of vegetation to upstream river flow in the Heihe Rive basin by time series analysis of MODIS data
Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years
Dependence of quantum correlations of twin beams on pump finesse of optical parametric oscillator
The dependence of quantum correlation of twin beams on the pump finesse of an
optical parametric oscillator is studied with a semi-classical analysis. It is
found that the phase-sum correlation of the output signal and idler beams from
an optical parametric oscillator operating above threshold depends on the
finesse of the pump field when the spurious pump phase noise generated inside
the optical cavity and the excess noise of the input pump field are involved in
the Langevin equations. The theoretical calculations can explain the previously
experimental results, quantitatively.Comment: 27 pages, 8 figure
Reflective liquid crystal hybrid beam-steerer
We report on efficient optical beam-steering using a hot-embossed reflective blazed grating in combination with liquid crystal. A numerical simulation of the electrical switching characteristics of the liquid crystal is performed and the results are used in an FDTD optical simulator to analyze the beam deflection. The corresponding experiment on the realized device is performed and is found to be in good agreement. Beam deflection angles of 4.4° upon perpendicular incidence are found with low applied voltages of 3.4V. By tilting the device with respect to the incoming optical beam it can be electronically switched such that the beam undergoes either total internal reflection or reflection with a tunable angle
Quantum electric-dipole liquid on a triangular lattice
Geometric frustrations and quantum mechanical fluctuations may prohibit the
formation of long-range ordering even at the lowest temperature, and therefore
liquid-like ground states could be expected. A good example is the quantum spin
liquid in frustrated magnets that represents an exotic phase of matter and is
attracting enormous interests. Geometric frustrations and quantum fluctuations
can happen beyond magnetic systems. Here we propose that quantum
electric-dipole liquids, analogs to quantum spin liquids, could emerge in
frustrated dielectrics where antiferroelectrically coupled small electric
dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite
BaFe12O19, in which small electric dipoles originated from the off-center
displacement of Fe3+ in the FeO5 bipyramids constitute a two-dimensional
triangular lattice, represents a promising candidate to generate the
anticipated electric-dipole liquid. We present a series of experimental
evidences, including dielectric permittivity, heat capacity, and thermal
conductivity measured down to 66 mK, to reveal the existence of a nontrivial
ground state in BaFe12O19, characterized by itinerant low-energy excitations
with a small gap, to which we interpret as an exotic liquid-like quantum phase.
The quantum electric-dipole liquids in frustrated dielectrics open up a fresh
playground for fundamental physics and may find applications in quantum
information and computation as well.Comment: 13 pages, 6 figure
The viability of achieving chiral separation through the optical manipulation of molecules
Several different optical methods have recently been proposed for the potential separation of chiral molecules according to their intrinsic handedness. Applying fundamental symmetry and electrodynamical principles provides a perspective that casts doubt over the viability of some of the more extravagant claims. However there is a genuine basis for achieving chiral separation by using circularly polarized light to deliver chirally sensitive optical forces. The mechanism comes into play when molecules (or nanoscale particles) are optically trapped in a laser beam by forward Rayleigh scattering, as a result of trapping forces that depend on positioning within the beam profile. In such a setup, chiral molecules experience subtle additional forces associated with a combination of electric and magnetic transition dipoles; when circularly polarized light is used for the trapping, a discriminatory response can be identified that has the capacity to separate left- and right-handed molecular isomers. Here, clear differences can be observed between the behavior of isotropic liquids and poled solutions or liquid crystals. Detailed analysis provides an objective basis to assess new prospects for the recognition and differentiation of molecules with opposite chiral form, identifying and paving the way for future commercial applications
- …
