64 research outputs found

    Thermodynamic Mechanism of Nanofluid Minimum Quantity Lubrication Cooling Grinding and Temperature Field Models

    Get PDF
    Grinding is an indispensable form of machining, in which, a large amount of heat is transferred into workpiece surface, causing surface burn of the workpiece. Flood grinding is easy to cause pollution to the environment while dry grinding and minimum quantity lubrication (MQL) is insufficient of cooling and lubrication effect. The appearance of nanofluid minimum quantity lubrication cooling (NMQLC) technique can effectively solve the problem of heat transfer in grinding zone and also enhance the lubrication characteristics. In this chapter, NMQLC technique, including nanofluid preparation and atomization is summarized first; then a review on the mechanism of grinding thermodynamics under NMQLC condition is presented based on published literatures. Most of the studies, including investigation of grinding forces and temperatures, indicate that NMQLC has realized a lubrication-cooling effect close to that of flood lubrication. According to existing investigations, theoretical models of temperature field are concluded, heat source distribution model, thermal distribution coefficient model, and heat transfer coefficient model under NMQLC condition are developed, and temperature field control equation are determined. This chapter reviews and amasses the current state of the mechanism of grinding thermodynamics and also recommends ways to precision control the grinding temperature field

    Complete Classification and Efficient Determination of Arrangements Formed by Two Ellipsoids

    Get PDF
    International audienceArrangements of geometric objects refer to the spatial partitions formed by the objects and they serve as an underlining structure of motion design, analysis and planning in CAD/CAM, robotics, molecular modeling, manufacturing and computer-assisted radio-surgery. Arrangements are especially useful to collision detection, which is a key task in various applications such as computer animation , virtual reality, computer games, robotics, CAD/CAM and computational physics. Ellipsoids are commonly used as bounding volumes in approximating complex geometric objects in collision detection. In this paper we present an in-depth study on the arrangements formed by two ellipsoids. Specifically, we present a classification of these arrangements and propose an efficient algorithm for determining the arrangement formed by any particular pair of ellipsoids. A stratification diagram is also established to show the connections among all the arrangements formed by two ellipsoids. Our results for the first time elucidate all possible relative positions between two arbitrary ellipsoids and provides an efficient and robust algorithm for determining the relative position of any two given ellipsoids, therefore providing the necessary foundation for developing practical and trustworthy methods for processing ellipsoids for collision analysis or simulation in various applications

    Enumerating the morphologies of non-degenerate Darboux cyclides

    Get PDF
    International audienceWe provide an enumeration of all possible morphologies of non-degenerate Darboux cyclides. Based on the fact that every Darboux cyclide in R 3 is the stereographic projection of the intersection surface of a sphere and a quadric in R 4 , we transform the enumeration problem of morphologies of Darboux cyclides to the enumeration of the algebraic sequences that characterize the intersection of a sphere and a quadric in R 4

    CD151-α3β1 Integrin Complexes are Prognostic Markers of Glioblastoma and Cooperate with EGFR to Drive Tumor Cell Motility and Invasion

    Get PDF
    Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p \u3c 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma

    Biological Bone Micro Grinding Temperature Field under Nanoparticle Jet Mist Cooling

    Get PDF
    Clinical neurosurgeons used micro grinding to remove bone tissues, and drip irrigation-type normal saline (NS) is used with low cooling efficiency. Osteonecrosis and irreversible thermal neural injury caused by excessively high grinding temperature are bottleneck problems in neurosurgery and have severely restricted the application of micro grinding in surgical procedures. Therefore, a nanoparticle jet mist cooling (NJMC) bio-bone micro grinding process is put forward in this chapter. The nanofluid convective heat transfer mechanism in the micro grinding zone is investigated, and heat transfer enhancement mechanism of solid nanoparticles and heat distribution mechanism in the micro grinding zone are revealed. On this basis, a temperature field model of NJMC bio-bone micro grinding is established. An experimental platform of NJMC bio-bone micro grinding is constructed, and bone micro grinding force and temperatures at different measuring points on the bone surface are measured. The results indicated that the model error of temperature field is 6.7%, theoretical analysis basically accorded with experimental results, thus certifying the correctness of the dynamic temperature field in NJMC bio-bone micro grinding

    Five-port beam splitter of a single-groove grating

    No full text

    High-Efficiency Broadband Polarization-Independent Reflective Grating with Double-Layer Dielectric Rectangle Groove in Littrow Mounting

    No full text
    The design and performance of a high-efficiency broadband and polarization-independent reflective grating is reported. The physical mechanism of the gratings can be described by the modal method. By using rigorous coupled wave analysis (RCWA) and simulated annealing (SA) algorithms, the parameters of grating were optimized. The calculated diffraction efficiencies of −1st order for TE and TM polarizations in Littrow mounting exceeded 95%, from 988 nm to 1122 nm, and by over 98% in the bandwidth ranging from 1015 nm to 1085 nm, with the value of polarization-dependent loss (PDL) lower than 0.06 dB. Moreover, the electric field distribution of the grating was simulated by the finite element method (FEM), which demonstrated that most of the energy of the incident light was diffracted to the −1st order and the electric field was distributed almost outside the grating. In addition, the great fabrication tolerances and incident angle tolerance ensured high performance of the designed grating in manufacture and application. With its properties of high efficiency, broadband, and polarization-independence, the designed grating should be of great interest for lots of practical applications, including chirped pulse amplification (CPA), interferometers, and spectrometers
    corecore