83,863 research outputs found

    Crystal nuclei templated nanostructured membranes prepared by solvent crystallization and polymer migration

    Get PDF
    Currently, production of porous polymeric membranes for filtration is predominated by the phase-separation process. However, this method has reached its technological limit, and there have been no significant breakthrough over the last decade. Here we show, using polyvinylidene fluoride as a sample polymer, a new concept of membrane manufacturing by combining oriented green solvent crystallization and polymer migration is able to obtain high performance membranes with pure water permeation flux substantially higher than those with similar pore size prepared by conventional phase-separation processes. The new manufacturing procedure is governed by fewer operating parameters and is, thus, easier to control with reproducible results. Apart from the high water permeation flux, the prepared membranes also show excellent stable flux after fouling and superior mechanical properties of high pressure load and better abrasion resistance. These findings demonstrate the promise of a new concept for green manufacturing nanostructured polymeric membranes with high performances

    Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications

    Full text link
    We define a number of quark fragmentation functions for spin-0, -1/2 and -1 hadrons, and classify them according to their twist, spin and chirality. As an example of their applications, we use them to analyze semi-inclusive deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221

    Leading Chiral Contributions to the Spin Structure of the Proton

    Get PDF
    The leading chiral contributions to the quark and gluon components of the proton spin are calculated using heavy-baryon chiral perturbation theory. Similar calculations are done for the moments of the generalized parton distributions relevant to the quark and gluon angular momentum densities. These results provide useful insight about the role of pions in the spin structure of the nucleon, and can serve as a guidance for extrapolating lattice QCD calculations at large quark masses to the chiral limit.Comment: 8 pages, 2 figures; a typo in Ref. 7 correcte

    Lorentz Symmetry and the Internal Structure of the Nucleon

    Full text link
    To investigate the internal structure of the nucleon, it is useful to introduce quantities that do not transform properly under Lorentz symmetry, such as the four-momentum of the quarks in the nucleon, the amount of the nucleon spin contributed by quark spin, etc. In this paper, we discuss to what extent these quantities do provide Lorentz-invariant descriptions of the nucleon structure.Comment: 6 pages, no figur

    From Dust To Planetesimal: The Snowball Phase ?

    Full text link
    The standard model of planet formation considers an initial phase in which planetesimals form from a dust disk, followed by a phase of mutual planetesimal-planetesimal collisions, leading eventually to the formation of planetary embryos. However, there is a potential transition phase (which we call the "snowball phase"), between the formation of the first planetesimals and the onset of mutual collisions amongst them, which has often been either ignored or underestimated in previous studies. In this snowball phase, isolated planetesimals move on Keplerian orbits and grow solely via the direct accretion of sub-cm sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which planetesimals are progressively produced from the dust, we consider the expected sizes to which the planetesimals can grow before mutual collisions commence and derive the dependence of this size on a number of critical parameters, including the degree of disk turbulence, the planetesimal size at birth and the rate of planetesimal creation. For systems in which turbulence is weak and the planetesimals are created at a low rate and with relatively small birth size, we show that the snowball growth phase can be very important, allowing planetesimals to grow by a factor of 10^6 in mass before mutual collisions take over. In such cases, the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. Moreover, such growth can take place within the typical lifetime of a protoplanetary gas disk. A noteworthy result is that ... ...(see the paper). For the specific case of close binaries such as Alpha Centauri ... ... (see the paper). From a more general perspective, these preliminary results suggest that an efficient snowball growth phase provides a large amount of "room at the bottom" for theories of planet formation.Comment: Accepted for publication in the Astrophysical Journal. 15 pages, 4 figures, 1 tabl
    • 

    corecore