83 research outputs found

    Ionic liquids at electrified interfaces

    Get PDF
    Until recently, “room-temperature” (<100–150 °C) liquid-state electrochemistry was mostly electrochemistry of diluted electrolytes(1)–(4) where dissolved salt ions were surrounded by a considerable amount of solvent molecules. Highly concentrated liquid electrolytes were mostly considered in the narrow (albeit important) niche of high-temperature electrochemistry of molten inorganic salts(5-9) and in the even narrower niche of “first-generation” room temperature ionic liquids, RTILs (such as chloro-aluminates and alkylammonium nitrates).(10-14) The situation has changed dramatically in the 2000s after the discovery of new moisture- and temperature-stable RTILs.(15, 16) These days, the “later generation” RTILs attracted wide attention within the electrochemical community.(17-31) Indeed, RTILs, as a class of compounds, possess a unique combination of properties (high charge density, electrochemical stability, low/negligible volatility, tunable polarity, etc.) that make them very attractive substances from fundamental and application points of view.(32-38) Most importantly, they can mix with each other in “cocktails” of one’s choice to acquire the desired properties (e.g., wider temperature range of the liquid phase(39, 40)) and can serve as almost “universal” solvents.(37, 41, 42) It is worth noting here one of the advantages of RTILs as compared to their high-temperature molten salt (HTMS)(43) “sister-systems”.(44) In RTILs the dissolved molecules are not imbedded in a harsh high temperature environment which could be destructive for many classes of fragile (organic) molecules

    Deep Eutectic Solvents (DESs) and their applications [forthcoming]

    Get PDF
    Deep Eutectic Solvents (DESs) and Their Application

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Isolated low-valent nickel

    No full text
    Electrochemical conversion of CO2 to fuels is an attractive pathway to store electrical energy in chemical form. Isolated, low-valent Ni species in nitrogen-doped graphene are now demonstrated to selectively convert CO2 to CO electrochemically with high intrinsic activity and stability

    What We Currently Know about Carbon-Supported Metal and Metal Oxide Nanomaterials in Electrochemical CO2 Reduction

    No full text
    We thank Jane and Aatos Erkko foundation (the USVA project)and Academy of Finland (Aalto University Profi 5) for financialsupport. We thank Md Noor Hossain for discussionsElectrochemical reduction of CO2 is considered important in enhancing the circular-economy design; it can suppress harmful greenhouse-gas emissions while, combined with intermittent renewable energy sources, it can employ the surplus energy for production of important chemicals and fuels. In the process, electrocatalysts play an important role as the mediators of the highly active and selective conversion of CO2. Transition and post transition metals and their oxides are an important electrocatalyst group. For practical reasons, these metals need to be applied as nanoparticles supported on highly conducting materials enabling fabrication of 3D electrodes. In this minireview, we focus on gathering our current knowledge on the effects which transition and post transition metal and metal oxide nanoparticles supported on different carbons may have on electrochemical reduction of CO2. We focus on literature of studies conducted in aqueous conditions, under as similar conditions as possible, to ensure comparability. This approach enables us to highlight possible support effects and issues that complicate making conclusions on support effects.Peer reviewe
    • 

    corecore