9 research outputs found

    THERAPEUTIC COMBINATION OPTIMIZATION FOR HEPATOCELLULAR CARCINOMA

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (CSI

    EPIGENETICS OF HEPATOCELLULAR CARCINOMA.

    No full text
    10.1186/s40169-019-0230-08113

    JAK/STAT signaling in hepatocellular carcinoma

    No full text
    Liver cancer is the second most lethal cancer in the world with limited treatment options. Hepatocellular carcinoma (HCC), which accounts for more than 80% of all liver cancers, has had increasing global incidence over the past few years. There is an urgent need for novel and better therapeutic intervention for HCC patients. The JAK/STAT signaling pathway plays a multitude of important biological functions in both normal and malignant cells. In a subset of HCC, JAK/STAT signaling is aberrantly activated, leading to dysregulation of downstream target genes that controls survival, angiogenesis, stemness, immune surveillance, invasion and metastasis. In this review, we will focus on the role of JAK/STAT signaling in HCC and discuss the current clinical status of several JAK/STAT inhibitors

    A chemical biology approach reveals a dependency of glioblastoma on biotin distribution

    No full text
    Glioblastoma (GBM) is a uniformly lethal disease driven by glioma stem cells (GSCs). Here, we use a chemical biology approach to unveil previously unknown GBM dependencies. By studying sulconazole (SN) with anti-GSC properties, we find that SN disrupts biotin distribution to the carboxylases and histones. Transcriptomic and metabolomic analyses of SN-treated GSCs reveal metabolic alterations that are characteristic of biotin-deficient cells, including intracellular cholesterol depletion, impairment of oxidative phosphorylation, and energetic crisis. Furthermore, SN treatment reduces histone biotinylation, histone acetylation, and expression of superenhancer-associated GSC critical genes, which are also observed when biotin distribution is genetically disrupted by holocarboxylase synthetase (HLCS) depletion. HLCS silencing impaired GSC tumorigenicity in an orthotopic xenograft brain tumor model. In GBM, high HLCS expression robustly indicates a poor prognosis. Thus, the dependency of GBM on biotin distribution suggests that the rational cotargeting of biotin-dependent metabolism and epigenetic pathways may be explored for GSC eradication.National Research Foundation (NRF)National University of Singapore (NUS), Temasek LaboratoriesPublished versionThis work was supported by the National Research Foundation Fellowship NRF-NRFF2017-01 (D.S.T.O.), National University of Singapore (NUS) start-up grant (D.S.T.O. and M.J.K.), NUS President’s Assistant Professorship (D.S.T.O.), and NUS Research Scholarships (M.J.Y.A., B.W.L.L., Y.H.C., and R.T.M.). S.K. and C.S.V. thank A*STAR and NSCC for support

    Epigenetics in cancer stem cells

    No full text
    Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed “cancer stem cells” that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall
    corecore