22 research outputs found
Interaction between Coastal and Oceanic Ecosystems of the Western and Central Pacific Ocean through Predator-Prey Relationship Studies
The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8±0.40CV million tonnes or 2.17×1012±0.40CV individuals. This represents 6.1%±0.17CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators
Development of a stochastic bioeconomic model for the red octopus fishery on the Yucatan Peninsula: Implications for management
Although much effort has been dedicated to the management of the red octopus fishery on the Yucatan Peninsula (Mexico), managers have yet to incorporate economic aspects to ensure sustainable and profitable exploitation of this fishery resource. We developed a bioeconomic model that incorporated the uncertainty for the r and K parameters. We fit 3 models (Schaefer, Fox, and Pella–Tomlinson) to abundance index survey data and used the Akaike information criterion for model selection. The best fit corresponded to the Schaefer model. We built deterministic and stochastic versions of the Gordon–Schaefer model. Economic data (costs and prices) were determined from inter[1]views with fishermen. To estimate the posterior distributions of parameters and indicators, we used Bayesian methods with Markov chain Monte Carlo (MCMC) simulations. The deterministic results suggested that the maximum sustainable income was Mex390.8 million, with a fishing effort of 2,472 fishing boats. The equilibrium point corresponded to an effort of 4,945 fishing boats. Regarding the stochastic model, the MCMC simulation results suggest that the maximum sustainable income distribution was not normal; its average was 849.50 million. The most likely fishing effort at equilibrium was 4,970 fishing boats. Our results suggest the fishery could be operating close to the economic equilibrium point; if this is the case, fishing effort must decrease in order for annual profit to increase. Our approach will help make periodical re-evaluations of the fishery and establish management strategies to ensure the profitable and sustainable exploitation of the red octopus on the Yucatan Peninsula
Results of GLM modeling presence-absence of reef prey in stomach contents of predators.
<p>Df, degree of freedom; Chisq, Deviance of the final model; p-value from Anova Chi-test; BIC, Bayesian Information Criterion. Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.</p
Proportion by weight of reef prey in stomach content against predator’s species, the main explanatory variable, for all predators consuming reef prey and caught with longline gear.
<p>Predicted means with 95% confidence interval. Predator code: see caption of <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036701#pone-0036701-g001" target="_blank">figure 1</a>. No rainbow runner (RRU) was caught with longline gear.</p
Locations of the 812 sets where samples were collected.
<p>Locations of the 812 sets where samples were collected.</p