1,664 research outputs found
Behavior skills training of differential reinforcement of alternative behavior for three paraprofessionals working in inclusive classrooms
There is a growing trend of using paraprofessionals to augment the education of students with disabilities. Paraprofessionals are often the least educated and trained member in a classroom, yet can be asked to provide assistance to students with complex needs. Students with disabilities require the use of practices that are grounded in scientific research in order to be included as much as possible in the regular education curriculum. This study sought to examine the effects
of a multi-component training package, behavior skills training, on three paraprofessionals’ use of a positive behavior support strategy. A single-subject research design was used to measure the effects of the training as well as the effects of differential reinforcement of alternative behavior on students’ rates of challenging and alternative behaviors. Results indicated that behavior skills training had a positive impact on the paraprofessionals’ use of the strategy. All three paraprofessionals rated their experience with the training and the strategy as favorable
A Conserved Hydrolase Responsible for the Cleavage of Aminoacylphosphatidylglycerol in the Membrane of Enterococcus faecium
Aminoacylphosphatidylglycerol synthases (aaPGSs) are enzymes that transfer amino acids from aminoacyl-tRNAs (aa-tRNAs) to phosphatidylglycerol (PG) to form aa-PG in the cytoplasmic membrane of bacteria. aa-PGs provide bacteria with resistance to a range of antimicrobial compounds and stress conditions. Enterococcus faecium encodes a triple-specific aaPGS (RakPGS) that utilizes arginine, alanine, and lysine as substrates. Here we identify a novel hydrolase (AhyD), encoded immediately adjacent to rakPGS in E. faecium, which is responsible for the hydrolysis of aa-PG. The genetic synteny of aaPGS and ahyD is conserved in \u3e 60 different bacterial species. Deletion of ahyD in E. faecium resulted in increased formation of Ala-PG and Lys-PG and increased sensitivity to bacitracin. Our results suggest that AhyD and RakPGS act together to maintain optimal levels of aa-PG in the bacterial membrane to confer resistance to certain antimicrobial compounds and stress conditions
An open-source, wireless vest for measuring autonomic function in infants
Infant behavior, like all behavior, is the aggregate product of many nested processes operating and interacting over multiple time scales; the result of a tangle of inter-related causes and effects. Efforts in identifying the mechanisms supporting infant behavior require the development and advancement of new technologies that can accurately and densely capture behavior's multiple branches. The present study describes an open-source, wireless autonomic vest specifically designed for use in infants 8-24 months of age in order to measure cardiac activity, respiration, and movement. The schematics of the vest, instructions for its construction, and a suite of software designed for its use are made freely available. While the use of such autonomic measures has many applications across the field of developmental psychology, the present article will present evidence for the validity of the vest in three ways: (1) by demonstrating known clinical landmarks of a heartbeat, (2) by demonstrating an infant in a period of sustained attention, a well-documented behavior in the developmental psychology literature, and (3) relating changes in accelerometer output to infant behavior
Virological and molecular characterization of a simian human immunodeficiency virus (SHIV) encoding the envelope and reverse transcriptase genes from HIV-1
Simian-human immunodeficiency virus encoding both reverse transcriptase (RT) and envelope genes of HIV-1 (RT Env SHIV) is important for evaluating biomedical prevention modalities for HIV/AIDS. We describe virological characterization of a clade B RT Env SHIV following infection of macaques via multiple routes. In vivo passage of the RT Env SHIV through Indian rhesus macaque enhanced infectivity. Expanded virus had minimal envelope heterogeneity and was inhibited by NNRTIs and CCR5 antagonists. Infection of macaques with RT Env SHIV via mucosal or intravenous routes resulted in stable infection accompanied by peak plasma viremia of approximately 5×10 6 copies/ml that was controlled beyond set point. Molecular homogeneity of the virus was maintained following in vivo passage. Inhibition of RT Env SHIV by RT and entry inhibitors and ease of in vivo transmission make it a useful model for testing the efficacy of combinations of entry and RT inhibitors in nonhuman primates. © 2012 Elsevier Inc
Rapid 13(c) urea breath test to identify Helicobacter pylori infection in emergency department patients with upper abdominal pain
Introduction: In emergency department (ED) patients with upper abdominal pain, management includes ruling out serious diseases and providing symptomatic relief. One of the major causes of upper abdominal pain is an ulcer caused by Helicobacter pylori (H. pylori), which can be treated and cured with antibiotics. We sought to estimate the prevalence of H. pylori infection in symptomatic patients using a convenience sample at a single urban academic ED and demonstrate the feasibility of ED-based testing.
Methods: We prospectively enrolled patients with a chief complaint of pain or discomfort in the upper abdomen for 1 year from February 2011 until February 2012 at a single academic urban ED. Enrolled subjects were tested for H. pylori using a rapid point of care 13C Urea Breath Test (UBT) [Exalenz Bioscience]. We compared patient characteristics between those who tested positive versus negative for the disease.
Results: A total of 205 patients with upper abdominal pain were tested over 12 months, and 24% (95% confidence interval: 19% to 30%) tested positive for H. pylori. Black subjects were more likely to test positive than white subjects (28% v. 6%, P \u3c 0.001). Other factors, such as age and sex, were not different between the 2 groups.
Conclusion: In our ED, H. pylori infection was present in 1 in 4 patients with epigastric pain, and testing with a UBT was feasible. Further study is needed to determine the risk factors associated with infection, the prevalence of H. pylori in other EDs, the effect of the test on ED length of stay and the cost-effectiveness of an ED-based test-and-treat strategy. [West J Emerg Med. 2013;14(3):278–282.
First Results from the DRIFT-IIa Dark Matter Detector
Data from the DRIFT-IIa directional dark matter experiment are presented,
collected during a near continuous 6 month running period. A detailed
calibration analysis comparing data from gamma-ray, x-ray and neutron sources
to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of
neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts,
designed to remove non-nuclear recoil events, are shown to reject 60Co
gamma-rays with a rejection factor of better than 8x10-6 for all energies above
threshold. An unexpected event population has been discovered and is shown here
to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the
central cathode. A limit on the flux of neutrons in the Boulby Underground
Laboratory is derived from analysis of unshielded and shielded data.Comment: 43 pages, 14 figures, submitted to Astroparticle Physic
Identifying the Neural Correlates of Anticipatory Postural Control: A Novel fMRI Paradigm
Altered postural control in the trunk/hip musculature is a characteristic of multiple neurological and musculoskeletal conditions. Previously it was not possible to determine if altered cortical and subcortical sensorimotor brain activation underlies impairments in postural control. This study used a novel fMRI-compatible paradigm to identify the brain activation associated with postural control in the trunk and hip musculature. BOLD fMRI imaging was conducted as participants performed two versions of a lower limb task involving lifting the left leg to touch the foot to a target. For the supported leg raise (SLR) the leg is raised from the knee while the thigh remains supported. For the unsupported leg raise (ULR) the leg is raised from the hip, requiring postural muscle activation in the abdominal/hip extensor musculature. Significant brain activation during the SLR task occurred predominantly in the right primary and secondary sensorimotor cortical regions. Brain activation during the ULR task occurred bilaterally in the primary and secondary sensorimotor cortical regions, as well as cerebellum and putamen. In comparison with the SLR, the ULR was associated with significantly greater activation in the right premotor/SMA, left primary motor and cingulate cortices, primary somatosensory cortex, supramarginal gyrus/parietal operculum, superior parietal lobule, cerebellar vermis, and cerebellar hemispheres. Cortical and subcortical regions activated during the ULR, but not during the SLR, were consistent with the planning, and execution of a task involving multisegmental, bilateral postural control. Future studies using this paradigm will determine mechanisms underlying impaired postural control in patients with neurological and musculoskeletal dysfunction
Quantitatively monitoring the resilience of patterned vegetation in the Sahel
Patterning of vegetation in drylands is a consequence of localized feedback mechanisms. Such feedbacks also determine ecosystem resilience—i.e. the ability to recover from perturbation. Hence, the patterning of vegetation has been hypothesized to be an indicator of resilience, that is, spots are less resilient than labyrinths. Previous studies have made this qualitative link and used models to quantitatively explore it, but few have quantitatively analysed available data to test the hypothesis. Here we provide methods for quantitatively monitoring the resilience of patterned vegetation, applied to 40 sites in the Sahel (a mix of previously identified and new ones). We show that an existing quantification of vegetation patterns in terms of a feature vector metric can effectively distinguish gaps, labyrinths, spots, and a novel category of spot–labyrinths at their maximum extent, whereas NDVI does not. The feature vector pattern metric correlates with mean precipitation. We then explored two approaches to measuring resilience. First we treated the rainy season as a perturbation and examined the subsequent rate of decay of patterns and NDVI as possible measures of resilience. This showed faster decay rates—conventionally interpreted as greater resilience—associated with wetter, more vegetated sites. Second we detrended the seasonal cycle and examined temporal autocorrelation and variance of the residuals as possible measures of resilience. Autocorrelation and variance of our pattern metric increase with declining mean precipitation, consistent with loss of resilience. Thus, drier sites appear less resilient, but we find no significant correlation between the mean or maximum value of the pattern metric (and associated morphological pattern types) and either of our measures of resilience
Structural Sensorimotor Adaptations in Young Adults with Low Back Pain
Chronic low back pain (CLBP) is the largest cause of disability worldwide. There is evidence for regional structural brain adaptation in CLBP. Most studies have investigated middle-aged adults and show decreased grey matter density in pain processing regions. It is not clear if these adaptations are evident early in the lifespan of individuals with CLBP. The purpose of the study was to compare sensorimotor gray matter density in young adults with a history of CLBP with back-healthy controls. 53 young adults with a greater than 1-year history of CLBP and 29 young adults with no history of LBP participated. Clinical characteristics of the LBP group were quantified with measures of pain duration and intensity as well as pain-related fear and disability. Gray matter density was quantified with voxel-based morphometry. Whole brain and sensorimotor region of interest (ROI) comparisons between groups were made after covarying for age, sex, and total intracranial volume. ROIs were determined a priori. Associations between clinical characteristics and average gray matter density in sensorimotor ROI comparisons were explored with Pearson\u27s correlation coefficients. Individuals with CLBP reported an average duration of pain of 4.9 (+/- 2.2 years) and average pain intensity of 5.0/10. The LBP group had greater gray matter in the right primary somatosensory cortex, right inferior parietal lobule, and right midcingulate cortex (all p \u3c 0.05 FWE corrected). There were significant positive associations between average gray matter and clinical characteristics in the anterior, mid, and posterior cingulate cortices, the supramarginal gyrus, superior parietal lobule and supplementary motor area (all p \u3c 0.05). We demonstrate that in young adults, CLBP is associated with structural neuroplasticity in regions involved in sensory processing, motor control, and the sensory and emotional aspects of pain experience. Increased grey matter density early in the lifespan of individuals with CLBP may reflect an adaptation to ongoing nociceptive input
- …