19 research outputs found
The role of G-protein-coupled membrane estrogen receptor in mouse Leydig cell function : in vivo and in vitro evaluation
AbstractIn this study, G-coupled estrogen receptor (GPER) was inactivated, by treatment with antagonist (G-15), in testes of C57BL/6 mice: immature (3 weeks old), mature (3 months old) and aged (1.5 years old) (50 μg/kg bw), as well as MA-10 mouse Leydig cells (10 nM/24 h) alone or in combination with 17β-estradiol or antiestrogen (ICI 182,780). In G-15-treated mice, overgrowth of interstitial tissue was found in both mature and aged testes. Depending on age, differences in structure and distribution of various Leydig cell organelles were observed. Concomitantly, modulation of activity of the mitochondria and tubulin microfibers was revealed. Diverse and complex GPER regulation at the mRNA level and protein of estrogen signaling molecules (estrogen receptor α and β; ERα, ERβ and cytochrome P450 aromatase; P450arom) in G-15 Leydig cells was found in relation to age and the experimental system utilized (in vivo and in vitro). Changes in expression patterns of ERs and P450arom, as well as steroid secretion, reflected Leydig cell heterogeneity to estrogen regulation throughout male life including cell physiological status.We show, for the first time, GPER with ERs and P450arom work in tandem to maintain Leydig cell architecture and supervise its steroidogenic function by estrogen during male life. Full set of estrogen signaling molecules, with involvement of GPER, is crucial for proper Leydig cell function where each molecule acts in a specific and/or complementary manner. Further understanding of the mechanisms by which GPER controls Leydig cells with special regard to male age, cell of origin and experimental system used is critical for predicting and preventing testis steroidogenic disorders based on perturbations in estrogen signaling.</jats:p
Increased progesterone production in cumulus-oocyte complexes of female mice sired by males with the Y-chromosome long arm deletion and its potential influence on fertilization efficiency
It was revealed previously that B10.BR(Y(del)) females sired by males with the Y-chromosome long arm deletion differ from genetically identical B10.BR females sired by males with the intact Y chromosome. This is interpreted as a result of different epigenetic information which females of both groups inherit from their fathers. In the following study, we show that cumulus–oocyte complexes ovulated by B10.BR(Y(del)) females synthesize increased amounts of progesterone, which is important sperm stimulator. Because their extracellular matrix is excessively firm, the increased progesterone secretion belongs presumably to factors that compensate this feature enabling unchanged fertilization ratios. Described compensatory mechanism can act only on sperm of high quality, presenting proper receptors. Indeed, low proportion of sperm of Y(del) males that poorly fertilize B10.BR(Y(del)) oocytes demonstrates positive staining of membrane progesterone receptors. This proportion is significantly higher for sperm of control males that fertilize B10.BR(Y(del)) and B10.BR oocytes with the same efficiency