405 research outputs found

    An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    Get PDF
    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed

    A bodner-partom visco-plastic dynamic sphere benchmark problem

    Get PDF
    Developing benchmark analytic solutions for problems in solid and fluid mechanics is very important for the purpose of testing and verifying computational physics codes. Our primary objective in this research is to obtain a benchmark analytic solution to the equation of motion in radially symmetric spherical coordinates. An analytic solution for the dynamic response of a sphere composed of an isotropic visco-plastic material and subjected to spherically symmetric boundary conditions is developed and implemented. The radial displacement u is computed by solving the equation of motion, a linear second-order hyperbolic PDE. The plastic strains εp and εp are computed by solving two non-linear first-order ODEs in time. We obtain a solution for u in terms of the plastic strain components and boundary conditions in the form of an infinite series. Computationally, at each time step, we set up an iteration scheme to solve the PDE-ODE system. The linear momentum equation is solved using the plastic strains from the previous iteration, then the plastic strain equations are solved numerically using the new displacement. We demonstrate the accuracy and convergence of our benchmark solution under spatial mesh, time step, and eigenmode refinement

    Using Student Opinions Regarding Traditional Vs. Writing Across The Curriculum Teaching Techniques: A Qualitative Pilot Study

    Get PDF
    The focus groups of students representing a variety of majors, reported that assigning WTL exercises, WID papers, and guided-focus journals was indeed useful in helping then to learn the subject matter more comprehensively than the traditional method of lecturing and test taking. Students tended to report that they learned the information more in depth and could apply the information in their respective majors compared to only memorizing facts and terms.

    Advancing Autonomous Operations Technologies for NASA Missions

    Get PDF
    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

    Using Graded Peer Evaluation To Improve Students Writing Skills, Critical Thinking Ability, And Comprehension Of Material In A Principles Of Public Relations Course

    Get PDF
    This peer-evaluation assignment encouraged students to think critically, synthesize information and write about public relations course material rather than incorporate surface information into written assignments. Because peer reviewers can improve the grades on their final papers by offering concrete suggestions to the original authors, students tended to report that the peer-evaluation process improved their writing skills, critical thinking ability, and their understanding of public relations concepts and theories. This research demonstrates how peer evaluation can be a positive learning exercise that prompts students to develop higher-order cognitive skills and to improve their writing skills while learning discipline-specific course concepts

    Influence of drainage divides versus arid corridors on genetic structure and demography of a widespread freshwater turtle, Emydura macquarii krefftii, from Australia

    Get PDF
    The influence of Pleistocene climatic cycles on Southern Hemisphere biotas is not yet well understood. Australia's eastern coastal margin provides an ideal setting for examining the relative influence of landscape development, sea level fluctuation, and cyclic climatic aridity on the evolution of freshwater biodiversity. We examined the impact of climatic oscillations and physical biogeographic barriers on the evolutionary history of the wide-ranging Krefft's river turtle (Emydura macquarii krefftii), using range-wide sampling (649 individuals representing 18 locations across 11 drainages) and analysis of mitochondrial sequences (similar to 1.3-kb control region and ND4) and nuclear microsatellites (12 polymorphic loci). A range of phylogeographic (haplotype networks, molecular dating), demographic (neutrality tests, mismatch distributions), and population genetic analyses (pairwise F-ST, analysis of molecular variance, Bayesian clustering analysis) were implemented to differentiate between competing demographic (local persistence vs. range expansion) and biogeographic (arid corridor vs. drainage divide) scenarios. Genetic data reveal population genetic structure in Krefft's river turtles primarily reflects isolation across drainage divides. Striking north-south regional divergence (2.2% ND4 p-distance; c. 4.73Ma, 95% higher posterior density (HPD) 2.08-8.16Ma) was consistent with long-term isolation across a major drainage divide, not an adjacent arid corridor. Ancient divergence among regional lineages implies persistence of northern Krefft's populations despite the recurrent phases of severe local aridity, but with very low contemporary genetic diversity. Stable demography and high levels of genetic diversity are inferred for southern populations, where aridity was less extreme. Range-wide genetic structure in Krefft's river turtles reflects contemporary and historical drainage architecture, although regional differences in the extent of Plio-Pleistocene climatic aridity may be reflected in current levels of genetic diversity

    BMED 362.01: Pharmaceutical Sciences Laboratory

    Get PDF

    CMS Pixel Telescope Addition to T-980 Bent Crystal Collimation Experiment at the Tevatron

    Full text link
    An enhancement to the T-980 bent crystal collimation experiment at the Tevatron has been completed. The enhancement was the installation of a pixel telescope inside the vacuum-sealed beam pipe of the Tevatron. The telescope is comprised of six CMS PSI46 pixel plaquettes, arranged as three stations of horizontal and vertical planes, with the CAPTAN system for data acquisition and control. The purpose of the pixel telescope is to measure beam profiles produced by bent crystals under various conditions. The telescope electronics inside the beam pipe initially were not adequately shielded from the image current of the passing beams. A new shielding approach was devised and installed, which resolved the problem. The noise issues encountered and the mitigating techniques are presented herein, as well as some preliminary results from the telescope.Comment: 9 pp. 2nd International Conference on Technology and Instrumentation in Particle Physics 2011: TIPP 2011. 9-14 Jun 2011. Chicago, Illinoi

    Autonomous power expert system

    Get PDF
    The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered

    Commonsense Metaphysics and Lexical Semantics

    Get PDF
    In the TACITUS project for using commonsense knowledge in the understanding of texts about mechanical devices and their failures, we have been developing various commonsense theories that are needed to mediate between the way we talk about the behavior of such devices and causal models of their operation. Of central importance in this effort is the axiomatization of what might be called commonsense metaphysics. This includes a number of areas that figure in virtually every domain of discourse, such as granularity, scales, time, space, material, physical objects, shape, causality, functionality, and force. Our effort has been to construct core theories of each of these areas, and then to define, or at least characterize, a large number of lexical items in terms provided by the core theories. In this paper we discuss our methodological principles and describe the key ideas in the various domains we are investigating
    corecore