80 research outputs found
Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets Using a Triplet of Quadrupole Magnets
Proton therapy is an advantageous choice for the irradiation of tumors in proximity of critical structures due to rapid dose fall off and high dose deposition at target compared to dose at the surface of the patient (ie, peak-to-entrance dose ratio (P/E)). However, with target fields below 1.0 cm, as often encountered in proton radiosurgery, multiple Coulomb scattering (MCS) broadens proton beams leading to diminished P/E advantages and reduced dose delivery efficiency (DDE). Magnetic focusing tends to counteract MCS and is a promising method to reduce these undesirable effects. The purpose of this research is to investigate the advantages of proton magnetic focusing with a triplet of quadrupole rare earth permanent magnets
Incorporation of Multiple Coulomb Scattering in the Prediction of Optimal Focal Lengths in Magnetically Focused Proton Radiosurgery
Magnetic focusing of protons is a promising approach to improve patient radiation dose distribution in proton radiosurgery. The paths of individual protons are affected by multiple atomic deflections (multiple Coulomb scattering [MCS]) and affect overall beam characteristics in the patient. The purpose of this project is to account for the effects of MCS in the optimization of focal lengths in magnetically focused proton radiosurgery
Recommended from our members
Tumor Response to Radiotherapy is Dependent on Genotype-Associated Mechanisms in vitro and in vivo
Background: We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy. In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose. Methods: We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses. Results: Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose. Conclusions: We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size
Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk
Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al
Changes in Mouse Thymus and Spleen after Return from the STS-135 Mission in Space
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue
Chromosomal-level assembly of the Asian Seabass genome using long sequence reads and multi-layered scaffolding
We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species' native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics
Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo
<p>Abstract</p> <p>Background</p> <p>We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy.</p> <p>In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose.</p> <p>Methods</p> <p>We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses.</p> <p>Results</p> <p>Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose.</p> <p>Conclusions</p> <p>We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size.</p
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
AS Communication and Culture: The Essential Introduction.
AS Communication & Culture: The Essential Introduction is fully revised for the new 2008 GCE Communication and Culture Advanced Subsidiary specification with full colour throughout, over 120 images, new case studies and examples. The authors introduce students step-by-step to the skills of reading communication texts and understanding the link between communication and culture, as well as taking students through the tasks expected of them to pass the AQA AS Communication and Culture exam. The book is supplemented with a website featuring additional activities and resources, quizzes and tests. Areas covered include: • an introduction to communication and culture • cultural and communication codes • semiotics, communication process and models • the individual and contemporary culture • cultural contexts and practices • how to do the coursework • how to do the exam • examples from advertising, fashion, music, magazines, body language, film and more AS Communication and Culture: The Essential Introduction clearly guides students through the course and gives them the tips they need to become proficient in understanding and deconstructing communication texts and everyday culture
- …