8 research outputs found

    The Strength of Transosseous Medial Meniscal Root Repair Using a Simple Suture Technique Is Dependent on Suture Material and Position

    Get PDF
    Background:A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair.Hypotheses:(A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load.Study Design:Controlled laboratory study.Methods:In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro–computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map.Results:In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%.Conclusion:The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs.Clinical Relevance:The results provide insight into material and location for optimal repair strength.</jats:sec

    Proteomic Analyses of Autologous Chondrocyte Implantation Plasma Highlight Cartilage Acidic Protein 1 as a Candidate for Preclinical Screening.

    Get PDF
    BackgroundStratification is required to ensure that only patients likely to benefit receive autologous chondrocyte implantation (ACI). It would be advantageous to identify biomarkers to predict ACI outcome that are measurable in blood, avoiding the need for an invasive synovial fluid harvest.PurposeTo assess if proteomic analyses can be used to identify novel candidate blood biomarkers in individuals who respond well or poorly to ACI.Study designControlled laboratory study.MethodsIsobaric tagging for relative and absolute quantitation (iTRAQ) mass spectrometry was used to assess the proteome in plasma pooled from ACI responders (mean Lysholm improvement after ACI, 33; n = 10) or nonresponders (mean, -13; n = 10), collected at the time of surgery for cartilage harvest (stage 1) or implantation of culture-expanded chondrocytes (stage 2). An alternative proteomic method, label-free quantitation liquid chromatography-tandem mass spectrometry, was used to analyze plasma samples (majority matched to iTRAQ) individually. Differentially abundant proteins (±2.0-fold) were analyzed from both proteomic data sets, and markers of interest identified via pooled iTRAQ were validated via immunoassay of individual samples.ResultsProtein differences could be detected in the plasma preoperatively between ACI responders and nonresponders (16 proteins; ≥±2.0-fold change; P ConclusionsThis study is the first to use proteomic techniques to profile the plasma of individuals treated with ACI. Despite iTRAQ analysis of pooled plasmas indicating that there are differences in the plasma proteome between responders and nonresponders to ACI, these findings were not replicated when assessed using an alternative nonpooled technique. This study highlights some of the difficulties in profiling the plasma proteome in an attempt to identify novel biomarkers. Regardless, cartilage acidic protein 1 has been identified as a protein candidate, which is detectable in plasma and can predict outcome to ACI before treatment.Clinical relevanceCandidate plasma protein biomarkers identified in this study have the potential to help determine which patients will be best suited to treatment with ACI

    The Use of Novel Adopters for Acute Rib Fixation in Critical Chest Trauma, Undertaken by Orthopaedic Surgeons: an Observational Cohort Study

    No full text
    Background: Surgical stabilisation of acute rib fractures has recently undergone rapid change in the UK with respect to what type of injury is surgically stabilised and who undertakes the operation. This paper presents a review of the literature on surgical fixation and presents our early clinical experience using a recently introduced stabilising system

    Comparison of Knee Articular Cartilage Defect Size Between Measurements Obtained on Preoperative MRI Versus During Arthrotomy

    No full text
    Background:Treatment decisions for cartilage defects are often based on lesion size. Magnetic resonance imaging (MRI) is widely used to diagnose cartilage defects noninvasively; however, their size estimated from MRI may differ from defect sizes measured during arthrotomy, especially after debridement to healthy cartilage if undergoing autologous chondrocyte implantation.Purpose/Hypothesis:The purpose of this study was to evaluate the reliability of 2 methods to assess knee cartilage defect size on preoperative MRI and determine their accuracy in predicting postdebridement defect sizes recorded during arthrotomy. It was hypothesized that defect size would be predicted more accurately by the total area of abnormal articular cartilage rather than the area of full-thickness cartilage loss as identified on MRI.Study Design:Cohort study (diagnosis); Level of evidence, 3.Methods:This study included 64 patients (mean age, 41.8 ± 9.6 years) who underwent autologous cell therapy. Each patient received a 3-T MRI at 6.1 ± 3.0 weeks before cell implantation. Three raters, a radiologist, a surgeon, and a scientist, measured (1) the full-thickness cartilage defect area and (2) the total predicted abnormal cartilage area, identified by an abnormal signal on MRI. Interrater reliability was assessed using the intraclass correlation coefficient (ICC). Actual pre- and postdebridement defect sizes were obtained from intraoperative surgical notes. Postdebridement surgical measurements were considered the clinical reference standard and were compared with the radiologist’s MRI measurements.Results:Eighty-seven defects were assessed, located on the lateral (n = 8) and medial (n = 26) femoral condyle, trochlea (n = 17), and patella (n = 36). The interrater reliability of the cartilage defect measurements on MRI was good to excellent for the full-thickness cartilage defect area (ICC = 0.74) and the total predicted abnormal cartilage area (ICC = 0.78). The median full-thickness cartilage defect area on MRI underestimated the median postdebridement defect area by 78.3%, whereas the total predicted abnormal cartilage area measurement underestimated the postdebridement defect area by 14.3%.Conclusion:Measuring the full-thickness cartilage defect area on MRI underestimated the area to treat, whereas measuring the total abnormal area provided a better estimate of the actual defect size for treatment

    Twelve tips for optimising learning for postgraduate doctors in the operating theatre

    No full text
    Learning in the operating theatre forms a critical part of postgraduate medical education. Postgraduate doctors present a diverse cohort of learners with a wide range of learning needs that will vary by their level of experience and curriculum requirements. With evidence of both trainee dissatisfaction with the theatre learning experience and reduced time spent in the operating theatre, which has been exacerbated by the effects of the Covid-19 pandemic, it is vital that every visit to the operating theatre is used as a learning opportunity. We have devised 12 tips aimed at both learners and surgeons to optimise learning in the operating theatre, set out into four domains: educational context, preparation, learning in theatre, feedback and reflection. These tips have been created by a process of literature review and acknowledgment of established learning theory, with further discussion amongst surgical trainees, senior surgical faculty, surgical educators and medical education faculty

    Identification of Candidate Synovial Fluid Biomarkers for the Prediction of Patient Outcome After Microfracture or Osteotomy

    Get PDF
    Background: Biomarkers are needed to predict clinical outcomes for microfracture and osteotomy surgeries to ensure patients can be better stratified to receive the most appropriate treatment. Purpose: To identify novel biomarker candidates and to investigate the potential of a panel of protein biomarkers for the prediction of clinical outcome after treatment with microfracture or osteotomy. Study Design: Descriptive laboratory study. Methods: To identify novel candidate biomarker proteins, we used label-free quantitation after liquid chromatography–tandem mass spectrometry of dynamic range-compressed synovial fluids (SFs) from individuals who responded excellently or poorly (based on change in Lysholm score) to microfracture (n = 6) or osteotomy (n = 7). Biomarkers that were identified in this proteomic analysis or that relate to osteoarthritis (OA) severity or have predictive value in another early OA therapy (autologous cell implantation) were measured in the SF of 19 and 13 patients before microfracture or osteotomy, respectively, using commercial immunoassays, and were normalized to urea. These were aggrecanase-1 (ADAMTS-4), cartilage oligomeric matrix protein (COMP), hyaluronan (HA), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), matrix metalloproteinase 1 and 3, soluble CD14, S100 calcium binding protein A13, and 14-3-3 protein theta (YWHAQ). Levels of COMP and HA were also measured in the plasma of these patients. To find predictors of postoperative function, multivariable regression analyses were performed. Results: Proteomic analyses highlighted YWHAQ and LYVE-1 as being differentially abundant between the clinical responders/improvers and nonresponders after microfracture. A linear regression model after backward variable selection could relate preoperative concentrations of SF proteins (HA, YWHAQ, LYVE-1), activity of ADAMTS-4, and patient demographic characteristics (smoker status and sex) with Lysholm score 12 months after microfracture. Further, a generalized linear model with elastic net penalization indicated that lower preoperative activity of ADAMTS-4 in SF, being a nonsmoker, and being younger at the time of operation were indicative of a higher postoperative Lysholm score (improved joint function) after osteotomy surgery. Conclusion: We have identified biomarkers and generated regression models with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. Clinical Relevance: Candidate protein biomarkers identified in this study have the potential to help determine which patients will be best suited to treatment with microfracture or osteotomy
    corecore