1,687 research outputs found

    Superconductivity in Boron under pressure - why are the measured Tc_c's so low?

    Full text link
    Using the full potential linear muffin-tin orbitals (FP-LMTO) method we examine the pressure-dependence of superconductivity in the two metallic phases of Boron: bct and fcc. Linear response calculations are carried out to examine the phonon frequencies and electron-phonon coupling for various lattice parameters, and superconducting transition temperatures are obtained from the Eliashberg equation. In both bct and fcc phases the superconducting transition temperature Tc_c is found to decrease with increasing pressure, due to stiffening of phonons with an accompanying decrease in electron-phonon coupling. This is in contrast to a recent report, where Tc_c is found to increase with pressure. Even more drastic is the difference between the measured Tc_c, in the range 4-11 K, and the calculated values for both bct and fcc phases, in the range 60-100 K. The calculation reveals that the transition from the fcc to bct phase, as a result of increasing volume or decreasing pressure, is caused by the softening of the X-point transverse phonons. This phonon softening also causes large electron-phonon coupling for high volumes in the fcc phase, resulting in coupling constants in excess of 2.5 and Tc_c nearing 100 K. We discuss possible causes as to why the experiment might have revealed Tc_c's much lower than what is suggested by the present study. The main assertion of this paper is that the possibility of high Tc_c, in excess of 50 K, in high pressure pure metallic phases of boron cannot be ruled out, thus substantiating the need for further experimental investigations of the superconducting properties of high pressure pure phases of boron.Comment: 16 pages, 8 figures, 1 Tabl

    Electronic Structure of the Chevrel-Phase Compounds Snx_{x}Mo6_{6}Se7.5_{7.5}: Photoemission Spectroscopy and Band-structure Calculations

    Full text link
    We have studied the electronic structure of two Chevrel-phase compounds, Mo6_6Se7.5_{7.5} and Sn1.2_{1.2}Mo6_6Se7.5_{7.5}, by combining photoemission spectroscopy and band-structure calculations. Core-level spectra taken with x-ray photoemission spectroscopy show systematic core-level shifts, which do not obey a simple rigid-band model. The inverse photoemission spectra imply the existence of an energy gap located ∼1\sim 1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Quantitative comparison between the photoemission spectra and the band-structure calculations have been made. While good agreement between theory and experiment in the wide energy range was obtained as already reported in previous studies, we found that the high density of states near the Fermi level predicted theoretically due to the Van Hove singularity is considerably reduced in the experimental spectra taken with higher energy resolution than in the previous reports. Possible origins are proposed to explain this observation.Comment: 8 pages, 5 figure

    Developing the MTO Formalism

    Full text link
    We review the simple linear muffin-tin orbital method in the atomic-spheres approximation and a tight-binding representation (TB-LMTO-ASA method), and show how it can be generalized to an accurate and robust Nth order muffin-tin orbital (NMTO) method without increasing the size of the basis set and without complicating the formalism. On the contrary, downfolding is now more efficient and the formalism is simpler and closer to that of screened multiple-scattering theory. The NMTO method allows one to solve the single-electron Schroedinger equation for a MT-potential -in which the MT-wells may overlap- using basis sets which are arbitrarily minimal. The substantial increase in accuracy over the LMTO-ASA method is achieved by substitution of the energy-dependent partial waves by so-called kinked partial waves, which have tails attached to them, and by using these kinked partial waves at N+1 arbitrary energies to construct the set of NMTOs. For N=1 and the two energies chosen infinitesimally close, the NMTOs are simply the 3rd-generation LMTOs. Increasing N, widens the energy window, inside which accurate results are obtained, and increases the range of the orbitals, but it does not increase the size of the basis set and therefore does not change the number of bands obtained. The price for reducing the size of the basis set through downfolding, is a reduction in the number of bands accounted for and -unless N is increased- a narrowing of the energy window inside which these bands are accurate. A method for obtaining orthonormal NMTO sets is given and several applications are presented.Comment: 85 pages, Latex2e, Springer style, to be published in: Lecture notes in Physics, edited by H. Dreysse, (Springer Verlag

    Combined density-functional and dynamical cluster quantum Monte Carlo calculations for three-band Hubbard models for hole-doped cuprate superconductors

    Full text link
    Using a combined local density functional theory (LDA-DFT) and quantum Monte Carlo (QMC) dynamic cluster approximation approach, the parameter dependence of the superconducting transition temperature Tc of several single-layer hole-doped cuprate superconductors with experimentally very different Tcmax is investigated. The parameters of two different three-band Hubbard models are obtained using the LDA and the downfolding Nth-order muffin-tin orbital technique with N=0 and 1 respectively. QMC calculations on 4-site clusters show that the d-wave transition temperature Tc depends sensitively on the parameters. While the N=1 MTO basis set which reproduces all three pdσpd\sigma bands leads to a d-wave transition, the N=0 set which merely reproduces the LDA Fermi surface and velocities does not

    Third-Generation TB-LMTO

    Full text link
    We describe the screened Korringa-Kohn-Rostoker (KKR) method and the third-generation linear muffin-tin orbital (LMTO) method for solving the single-particle Schroedinger equation for a MT potential. The simple and popular formalism which previously resulted from the atomic-spheres approximation (ASA) now holds in general, that is, it includes downfolding and the combined correction. Downfolding to few-orbital, possibly short-ranged, low-energy, and possibly orthonormal Hamiltonians now works exceedingly well, as is demonstrated for a high-temperature superconductor. First-principles sp3 and sp3d5 TB Hamiltonians for the valence and lowest conduction bands of silicon are derived. Finally, we prove that the new method treats overlap of the potential wells correctly to leading order and we demonstrate how this can be exploited to get rid of the empty spheres in the diamond structure.Comment: latex2e, 32 printed pages, Postscript figs, to be published in: Tight-Binding Approach to Computational Materials Science, MRS Symposia Proceedings No. 491 (MRS, Pittsburgh, 1998

    New directions for hydrogen storage: Sulphur destabilised sodium aluminium hydride

    Get PDF
    Aluminium sulphide (Al2S3) is predicted to effectively destabilise sodium aluminium hydride (NaAlH4) in a single-step endothermic hydrogen release reaction. The experimental results show unexpectedly complex desorption processes and a range of new sulphur containing hydrogen storage materials have been observed. The NaAlH4-Al 2S3 system releases a total of 4.9 wt% of H2 that begins below 100°C without the need for a catalyst. Characterisation via temperature programmed desorption, in situ synchrotron powder X-ray diffraction, ex situ x-ray diffraction, ex situ Fourier transform infrared spectroscopy and hydrogen sorption measurements reveal complex decomposition processes that involve multiple new sulphur-containing hydride compounds. The system shows partial H2 reversibility, without the need for a catalyst, with a stable H2 capacity of ~1.6 wt% over 15 cycles in the temperature range of 200°C to 300°C. This absorption capacity is limited by the need for high H2 pressures (>280 bar) to drive the absorption process at the high temperatures required for reasonable absorption kinetics. The large number of new phases discovered in this system suggests that destabilisation of complex hydrides with metal sulphides is a novel but unexplored research avenue for hydrogen storage materials

    Lattice vibrations and structural instability in Cesium near the cubic to tetragonal transition

    Full text link
    Under pressure cesium undergoes a transition from a high-pressure fcc phase (Cs-II) to a collapsed fcc phase (Cs-III) near 4.2GPa. At 4.4GPa there follows a transition to the tetragonal Cs-IV phase. In order to investigate the lattice vibrations in the fcc phase and seek a possible dynamical instability of the lattice, the phonon spectra of fcc-Cs at volumes near the III-IV transition are calculated using Savrasov's density functional linear-response LMTO method. Compared with quasiharmonic model calculations including non-central interatomic forces up to second neighbours, at the volume V/V0=0.44V/V_0= 0.44 (V0V_0 is the experimental volume of bcc-Cs with a0a_0=6.048{\AA}), the linear-response calculations show soft intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons. Similar softening is also observed for short wavelength L[ξξξ]L[\xi\xi\xi] and L[00ξ]L[00\xi] phonons and intermediate wavelength L[ξξξ]L[\xi\xi\xi] phonons. The Born-von K\'{a}rm\'{a}n analysis of dispersion curves indicates that the interplanar force constants exhibit oscillating behaviours against plane spacing nn and the large softening of intermediate wavelength T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons results from a negative (110)-interplanar force-constant Φn=2\Phi_{n=2}. The frequencies of the T[11ˉ0][ξξ0]T_{[1\bar{1}0]}[{\xi}{\xi}0] phonons with ξ\xi around 1/3 become imaginary and the fcc structure becomes dynamically unstable for volumes below 0.41V00.41V_0. It is suggested that superstructures corresponding to the q≠0\mathbf{q}{\neq}0 soft mode should be present as a precursor of tetragonal Cs-IV structure.Comment: 12 pages, 5 figure

    Heat Conduction and Entropy Production in a One-Dimensional Hard-Particle Gas

    Get PDF
    We present large scale simulations for a one-dimensional chain of hard-point particles with alternating masses. We correct several claims in the recent literature based on much smaller simulations. Both for boundary conditions with two heat baths at different temperatures at both ends and from heat current autocorrelations in equilibrium we find heat conductivities kappa to diverge with the number N of particles. These depended very strongly on the mass ratios, and extrapolation to N -> infty resp. t -> infty is difficult due to very large finite-size and finite-time corrections. Nevertheless, our data seem compatible with a universal power law kappa ~ N^alpha with alpha approx 0.33. This suggests a relation to the Kardar-Parisi-Zhang model. We finally show that the hard-point gas with periodic boundary conditions is not chaotic in the usual sense and discuss why the system, when kept out of equilibrium, leads nevertheless to energy dissipation and entropy production.Comment: 4 pages (incl. 5 figures), RevTe

    A simple one-dimensional model of heat conduction which obeys Fourier's law

    Full text link
    We present the computer simulation results of a chain of hard point particles with alternating masses interacting on its extremes with two thermal baths at different temperatures. We found that the system obeys Fourier's law at the thermodynamic limit. This result is against the actual belief that one dimensional systems with momentum conservative dynamics and nonzero pressure have infinite thermal conductivity. It seems that thermal resistivity occurs in our system due to a cooperative behavior in which light particles tend to absorb much more energy than the heavier ones.Comment: 5 pages, 4 figures, to be published in PR

    The Prevalence of Latent Mycobacterium Tuberculosis Infection Based on an Interferon-γ Release Assay: A Cross-Sectional Survey Among Urban Adults in Mwanza, Tanzania.

    Get PDF
    One third of the world's population is estimated to be latently infected with Mycobacterium tuberculosis (LTBI). Surveys of LTBI are rarely performed in resource poor TB high endemic countries like Tanzania although low-income countries harbor the largest burden of the worlds LTBI. The primary objective was to estimate the prevalence of LTBI in household contacts of pulmonary TB cases and a group of apparently healthy neighborhood controls in an urban setting of such a country. Secondly we assessed potential impact of LTBI on inflammation by quantitating circulating levels of an acute phase reactant: alpha-1-acid glycoprotein (AGP) in neighborhood controls. The study was nested within the framework of two nutrition studies among TB patients in Mwanza, Tanzania. Household contacts- and neighborhood controls were invited to participate. The study involved a questionnaire, BMI determination and blood samples to measure AGP, HIV testing and a Quantiferon Gold In tube (QFN-IT) test to detect signs of LTBI. 245 household contacts and 192 neighborhood controls had available QFN-IT data. Among household contacts, the proportion of QFT-IT positive was 59% compared to 41% in the neighborhood controls (p = 0.001). In a linear regression model adjusted for sex, age, CD4 and HIV, a QFT-IT positive test was associated with a 10% higher level of alpha-1-acid glycoprotein(AGP) (10(B) 1.10, 95% CI 1.01; 1.20, p = 0.03), compared to individuals with a QFT-IT negative test. LTBI is highly prevalent among apparently healthy urban Tanzanians even without known exposure to TB in the household. LTBI was found to be associated with elevated levels of AGP. The implications of this observation merit further studies
    • …
    corecore