47 research outputs found

    Optical pump rectification emission: route to terahertz free-standing surface potential diagnostics

    Get PDF
    We introduce a method for diagnosing the electric surface potential of a semiconductor based on THz surface generation. In our scheme, that we name Optical Pump Rectification Emission, a THz field is generated directly on the surface via surface optical rectification of an ultrashort pulse after which the DC surface potential is screened with a second optical pump pulse. As the THz generation directly relates to the surface potential arising from the surface states, we can then observe the temporal dynamics of the static surface field induced by the screening effect of the photo-carriers. Such an approach is potentially insensitive to bulk carrier dynamics and does not require special illumination geometries

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz-∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    Location of studies and evidence of effects of herbivory on Arctic vegetation: a systematic map

    Get PDF
    Herbivores modify the structure and function of tundra ecosystems. Understanding their impacts is necessary to assess the responses of these ecosystems to ongoing environmental changes. However, the effects of herbivores on plants and ecosystem structure and function vary across the Arctic. Strong spatial variation in herbivore effects implies that the results of individual studies on herbivory depend on local conditions, i.e., their ecological context. An important first step in assessing whether generalizable conclusions can be produced is to identify the existing studies and assess how well they cover the underlying environmental conditions across the Arctic. This systematic map aims to identify the ecological contexts in which herbivore impacts on vegetation have been studied in the Arctic. Specifically, the primary question of the systematic map was: “What evidence exists on the effects of herbivores on Arctic vegetation?”

    InAs/GaAs quantum dots as efficient free carrier deep traps

    No full text
    Turchinovich D, Pierz K, Uhd Jepsen P. InAs/GaAs quantum dots as efficient free carrier deep traps. physica status solidi (c). 2003;(5):1556-1559

    Effect of copper on the carrier lifetime in black silicon

    No full text
    Porte HP, Turchinovich D, Persheyev S, Fan Y, Rose MJ, Jepsen PU. Effect of Copper on the Carrier Lifetime in Black Silicon. Journal of Infrared, Millimeter, and Terahertz Waves. 2011;32(7):883-886

    Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy

    Get PDF
    Porte HP, Uhd Jepsen P, Daghestani N, Rafailov EU, Turchinovich D. Ultrafast release and capture of carriers in InGaAs/GaAs quantum dots observed by time-resolved terahertz spectroscopy. Applied Physics Letters. 2009;94(26).We observe ultrafast release and capture of charge carriers in InGaAs/GaAs quantum dots in a room-temperature optical pump-terahertz probe experiment sensitive to the population dynamics of conducting states. In case of resonant excitation of the quantum dot ground state, the maximum conductivity is achieved at approximately 35 ps after photoexcitation, which is assigned to release of carriers from the quantum dots. When exciting carriers into the conduction band of the barriers, depletion of the conductivity via carrier capture into the quantum dots with a few picosecond pump fluence-dependent time constant was observed
    corecore