45 research outputs found

    Expression and characterization of Pantoea CO dehydrogenase to utilize CO-containing industrial waste gas for expanding the versatility of CO dehydrogenase

    Get PDF
    Although aerobic CO dehydrogenases (CODHs) might be applicable in various fields, their practical applications have been hampered by low activity and no heterologous expression. We, for the first time, could functionally express recombinant PsCODH in E. coli and obtained a highly concentrated recombinant enzyme using an easy and convenient method. Its electron acceptor spectra, optimum conditions (pH 6.5 and 30 degrees C), and kinetic parameters (k(cat) of 12.97 s(-1), Km of 0.065 mM, and specific activity of 0.86 Umg(-1)) were examined. Blast furnace gas (BFG) containing 20% CO, which is a waste gas from the steel-making process, was tested as a substrate for PsCODH. Even with BFG, the recombinant PsCODH retained 88.2% and 108.4% activity compared with those of pure CO and 20% CO, respectively. The results provide not only a promising strategy to utilize CO-containing industrial waste gases as cheap, abundant, and renewable resources but also significant information for further studies about cascade reactions producing value-added chemicals via CO2 as an intermediate produced by a CODHbased CO-utilization system, which would ultimately expand the versatility of CODH.ope

    Sorghum Transformation: Overview and Utility

    Get PDF
    Over the past decade genomics resources available for sorghum have rapidly expanded (Paterson Int J Plant Genomics 2008:6, 2008), these resources, coupled with the recent completion of the genome sequence which is relatively small in size (730 Mb) (Paterson et al. Nature 457:551–556, 2009) makes sorghum a rather attractive species to study. Moreover, the USDA germplasm system maintains 42,614 accessions, of which more than 800 exotic landraces have been converted to day length-insensitive lines to facilitate their use in breeding programs. In addition, a set of EMS mutation stocks developed by the USDA Plant Stress and Germplasm Development Unit in Lubbock, TX (Xin et al. Bioenerg Res 2:10–16, 2009) will be a valuable resource for functional genomics studies in sorghum. However, in order to be a robust system for study a suite of functional genomics tools are necessary to complement these other resources to aid in down-stream hypothesis testing. A key functional genomics tool is the ability to modulate gene expression through the introduction of transgenic genetic elements. This is exemplified by recent work (Cook et al. Plant Cell 22:867–887, 2010) in which RNAi experiments were employed to specifically reduced expression of two alkylresorcinol synthases to demonstrate their role in the synthesis of the allelopathic molecule sorgoleone. In addition to its value as a functional genomics tool, plant transformation offers a route to broaden access to novel input and output traits for sorghum breeding programs
    corecore