1,422 research outputs found

    Properties Of Analyst Forecasts And Bond Underwriting Relationship: Evidence From Korea

    Get PDF
    Previous studies find that analysts forecast earnings more optimistically but inaccurately when they face the conflict of interest (COI). We extend this line of research by examining whether analysts’ forecasting behavior affected by the mere existence of potential COI are related with underwriting contracts.We document that analysts affiliated with security companies that become underwriters ex post issue more optimistic but less accurate forecasts for firms to issue bonds in Korea. We also find that firms to issue bonds are likely to award underwriting contracts to security companies with analysts who issue more optimistic but less accurate forecasts.  

    Atomistic Engineering of Phonons in Functional Oxide Heterostructures

    Get PDF
    Engineering of phonons, that is, collective lattice vibrations in crystals, is essential for manipulating physical properties of materials such as thermal transport, electron-phonon interaction, confinement of lattice vibration, and optical polarization. Most approaches to phonon-engineering have been largely limited to the high-quality heterostructures of III–V compound semiconductors. Yet, artificial engineering of phonons in a variety of materials with functional properties, such as complex oxides, will yield unprecedented applications of coherent tunable phonons in future quantum acoustic devices. In this study, artificial engineering of phonons in the atomic-scale SrRuO3/SrTiO3 superlattices is demonstrated, wherein tunable phonon modes are observed via confocal Raman spectroscopy. In particular, the coherent superlattices led to the backfolding of acoustic phonon dispersion, resulting in zone-folded acoustic phonons in the THz frequency domain. The frequencies can be largely tuned from 1 to 2 THz via atomic-scale precision thickness control. In addition, a polar optical phonon originating from the local inversion symmetry breaking in the artificial oxide superlattices is observed, exhibiting emergent functionality. The approach of atomic-scale heterostructuring of complex oxides will vastly expand material systems for quantum acoustic devices, especially with the viability of functionality integration

    FEASIBILITY OF BREWING MAKGEOLLI (TURBID RICE WINE) USING PARTIALLY GELATINIZED WHEAT FLOUR AND TAPIOCA FLOUR

    Get PDF
    Makgeolli is made from cooked rice or wheat, then brewed with nuruk (Korean fermentation starter) for several days. But, nowadays, attempts have been made to use various raw materials and process innovations to make makgeolli for particular purposes.  This study aimed to evaluate the quality of makgeolly made from partially gelatinized wheat flour and tapioca flour. Five different combination of wheat flour and tapioca flour were used to manufacture makgeolli. The results showed that different combination of partially gelatinized wheat flour and tapioca flour significantly affected the chemical and sensorial characteristics of makgeolli. Increasing proportion of wheat flour produced higher level of total acid, amino acidity, reducing sugar and total solid of makgeolli. Inversely, alcohol content was higher when higher level of tapioca flour was used. In general, sensorial characteristics of makgeolli made from partially gelatinized wheat flour and tapioca flour didn’t acceptable by panelists. Thus, brewing makgeolli by using partially gelatinized wheat flour and tapioca flour isn’t acceptable in term of sensorial characteristics

    Fault-tolerant quantum computation by hybrid qubits with bosonic cat-code and single photons

    Full text link
    Hybridizing different degrees of freedom or physical platforms potentially offers various advantages in building scalable quantum architectures. We here introduce a fault-tolerant hybrid quantum computation by taking the advantages of both discrete variable (DV) and continuous variable (CV) systems. Particularly, we define a CV-DV hybrid qubit with bosonic cat-code and single photon, which is implementable in current photonic platforms. By the cat-code encoded in the CV part, the dominant loss errors are readily correctable without multi-qubit encoding, while the logical basis is inherently orthogonal due to the DV part. We design fault-tolerant architectures by concatenating hybrid qubits and an outer DV quantum error correction code such as topological codes, exploring their potential merits in developing scalable quantum computation. We demonstrate by numerical simulations that our scheme is at least an order of magnitude more resource-efficient over all previous proposals in photonic platforms, allowing to achieve a record-high loss threshold among existing CV and hybrid approaches. We discuss its realization not only in all-photonic platforms but also in other hybrid platforms including superconduting and trapped-ion systems, which allows us to find various efficient routes towards fault-tolerant quantum computing.Comment: 21 pages, 8 figure
    • …
    corecore