15,547 research outputs found
Principal factors that determine the extension of detection range in molecular beacon aptamer/conjugated polyelectrolyte bioassays.
A strategy to extend the detection range of weakly-binding targets is reported that takes advantage of fluorescence resonance energy transfer (FRET)-based bioassays based on molecular beacon aptamers (MBAs) and cationic conjugated polyelectrolytes (CPEs). In comparison to other aptamer-target pairs, the aptamer-based adenosine triphosphate (ATP) detection assays are limited by the relatively weak binding between the two partners. In response, a series of MBAs were designed that have different stem stabilities while keeping the constant ATP-specific aptamer sequence in the loop part. The MBAs are labeled with a fluorophore and a quencher at both termini. In the absence of ATP, the hairpin MBAs can be opened by CPEs via a combination of electrostatic and hydrophobic interactions, showing a FRET-sensitized fluorophore signal. In the presence of ATP, the aptamer forms a G-quadruplex and the FRET signal decreases due to tighter contact between the fluorophore and quencher in the ATP/MBA/CPE triplex structure. The FRET-sensitized signal is inversely proportional to [ATP]. The extension of the detection range is determined by the competition between opening of the ATP/MBA G-quadruplex by CPEs and the composite influence by ATP/aptamer binding and the stem interactions. With increasing stem stability, the weak binding of ATP and its aptamer is successfully compensated to show the resistance to disruption by CPEs, resulting in a substantially broadened detection range (from millimolar up to nanomolar concentrations) and a remarkably improved limit of detection. From a general perspective, this strategy has the potential to be extended to other chemical- and biological-assays with low target binding affinity
PD-1 deficiency protects experimental colitis via alteration of gut microbiota
Programmed cell death-1 (PD-1) is a coinhibitory molecule and plays a pivotal role in immune regulation. Here, we demonstrate a role for PD-1 in pathogenesis of inflammatory bowel disease (IBD). Wild-type (WT) mice had severe wasting disease during experimentally induced colitis, while mice deficient for PD-1 (PD-1(-/-)) did not develop colon inflammation. Interestingly, PD-1(-/-) mice cohoused with WT mice became susceptible to colitis, suggesting that resistance of PD-1(-/-) mice to colitis is dependent on their gut microbiota. 16S rRNA gene-pyrosequencing analysis showed that PD-1(-/-) mice had altered composition of gut microbiota with significant reduction in Rikenellaceae family. These altered colon bacteria of PD-1(-/-) mice induced less amount of inflammatory mediators from colon epithelial cells, including interleukin (IL)-6, and inflammatory chemokines. Taken together, our study indicates that PD-1 expression is involved in the resistance to experimental colitis through altered bacterial communities of colon.112Ysciescopuskc
Electromagnetic fields in a 3D cavity and in a waveguide with oscillating walls
We consider classical and quantum electromagnetic fields in a
three-dimensional (3D) cavity and in a waveguide with oscillating boundaries of
the frequency . The photons created by the parametric resonance are
distributed in the wave number space around along the axis of the
oscillation. When classical waves propagate along the waveguide in the one
direction, we observe the amplification of the original waves and another wave
generation in the opposite direction by the oscillation of side walls. This can
be understood as the classical counterpart of the photon production. In the
case of two opposite walls oscillating with the same frequency but with a phase
difference, the interferences are shown to occur due to the phase difference in
the photon numbers and in the intensity of the generated waves.Comment: 8 pages revTeX including 1 eps fi
Heisenberg-picture approach to the exact quantum motion of a time-dependent forced harmonic oscillator
In the Heisenberg picture, the generalized invariant and exact quantum
motions are found for a time-dependent forced harmonic oscillator. We find the
eigenstate and the coherent state of the invariant and show that the
dispersions of these quantum states do not depend on the external force. Our
formalism is applied to several interesting cases.Comment: 15 pages, two eps files, to appear in Phys. Rev. A 53 (6) (1996
- …
