22,000 research outputs found
High-dimensional Bell test for a continuous variable state in phase space and its robustness to detection inefficiency
We propose a scheme for testing high-dimensional Bell inequalities in phase
space. High-dimensional Bell inequalities can be recast into the forms of a
phase-space version using quasiprobability functions with the complex-valued
order parameter. We investigate their violations for two-mode squeezed states
while increasing the dimension of measurement outcomes, and finally show the
robustness of high-dimensional tests to detection inefficiency.Comment: 8 pages, 2 figures; title and abstract changed, published versio
20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal
A superconducting transition temperature Tc as high as 100 K was recently
discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery
immediately ignited efforts to identify the mechanism for the dramatically
enhanced Tc from its bulk value of 7 K. Currently, there are two main views on
the origin of the enhanced Tc; in the first view, the enhancement comes from an
interfacial effect while in the other it is from excess electrons with strong
correlation strength. The issue is controversial and there are evidences that
support each view. Finding the origin of the Tc enhancement could be the key to
achieving even higher Tc and to identifying the microscopic mechanism for the
superconductivity in iron-based materials. Here, we report the observation of
20 K superconductivity in the electron doped surface layer of FeSe. The
electronic state of the surface layer possesses all the key spectroscopic
aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer
state is found to have a moderate Tc of 20 K with a smaller gap opening of 4
meV. Our results clearly show that excess electrons with strong correlation
strength alone cannot induce the maximum Tc, which in turn strongly suggests
need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure
The organic chemistry in the innermost, infalling envelope of the Class 0 protostar L483
Context: The protostellar envelopes, outflow and large-scale chemistry of
Class~0 and Class~I objects have been well-studied, but while previous works
have hinted at or found a few Keplerian disks at the Class~0 stage, it remains
to be seen if their presence in this early stage is the norm. Likewise, while
complex organics have been detected toward some Class~0 objects, their
distribution is unknown as they could reside in the hottest parts of the
envelope, in the emerging disk itself or in other components of the
protostellar system, such as shocked regions related to outflows.
Aims: In this work, we aim to address two related issues regarding
protostars: when rotationally supported disks form around deeply embedded
protostars and where complex organic molecules reside in such objects.
Methods: We observed the deeply embedded protostar, L483, using Atacama Large
Millimeter/submillimeter Array (ALMA) Band~7 data from Cycles~1 and 3 with a
high angular resolution down to ~0.1 (20~au) scales.
Results: We find that the kinematics of CS~-- and
HCN~-- are best fitted by the velocity profile from infall under
conservation of angular momentum and not by a Keplerian profile. The spatial
extents of the observed complex organics are consistent with an estimated ice
sublimation radius of the envelope at ~50~au, suggesting that the complex
organics exist in the hot corino of L483.
Conclusions: We find that L483 does not harbor a Keplerian disk down to at
least ~au in radius. Instead, the innermost regions of L483 are undergoing
a rotating collapse. This result highlights that some Class~0 objects contain
only very small disks, or none at all, with the complex organic chemistry
taking place on scales inside the hot corino of the envelope, in a region
larger than the emerging disk.Comment: 19 pages, 11 figure
Lattice dynamics and correlated atomic motion from the atomic pair distribution function
The mean-square relative displacements (MSRD) of atomic pair motions in
crystals are studied as a function of pair distance and temperature using the
atomic pair distribution function (PDF). The effects of the lattice vibrations
on the PDF peak widths are modelled using both a multi-parameter Born
von-Karman (BvK) force model and a single-parameter Debye model. These results
are compared to experimentally determined PDFs. We find that the near-neighbor
atomic motions are strongly correlated, and that the extent of this correlation
depends both on the interatomic interactions and crystal structure. These
results suggest that proper account of the lattice vibrational effects on the
PDF peak width is important in extracting information on static disorder in a
disordered system such as an alloy. Good agreement is obtained between the BvK
model calculations of PDF peak widths and the experimentally determined peak
widths. The Debye model successfully explains the average, though not detailed,
natures of the MSRD of atomic pair motion with just one parameter. Also the
temperature dependence of the Debye model largely agrees with the BvK model
predictions. Therefore, the Debye model provides a simple description of the
effects of lattice vibrations on the PDF peak widths.Comment: 9 pages, 11 figure
Testing quantum nonlocality by generalized quasiprobability functions
We derive a Bell inequality based on a generalized quasiprobability function
which is parameterized by one non-positive real value. Two types of known Bell
inequalities formulated in terms of the Wigner and Q functions are included as
limiting cases. We investigate violations of our Bell inequalities for single
photon entangled states and two-mode squeezed vacuum states when varying the
detector efficiency. We show that the Bell inequality for the Q function allows
the lowest detection efficiency for violations of local realism.Comment: 6 pages, 3 figure
Multi-kilowatt single-mode ytterbium-doped large-core fiber laser
We have demonstrated a highly efficient cladding-pumped ytterbium-doped fiber laser, generating >2.1 kW of continuous-wave output power at 1.1 µm with 74% slope efficiency with respect to launched pump power. The beam quality factor (M2) was better than 1.2. The maximum output power was only limited by available pump power, showing no evidence of roll-over even at the highest output power. We present data on how the beam quality depends on the fiber parameter, based on our current and past fiber laser developments. We also discuss the ultimate power-capability of our fiber in terms of thermal management, Raman nonlinear scattering, and material damage, and estimate it to 10 k
Local structure of In_(0.5)Ga_(0.5)As from joint high-resolution and differential pair distribution function analysis
High resolution total and indium differential atomic pair distribution
functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high
energy and anomalous x-ray diffraction experiments, respectively. The first
peak in the total PDF is resolved as a doublet due to the presence of two
distinct bond lengths, In-As and Ga-As. The In differential PDF, which involves
only atomic pairs containing In, yields chemical specific information and helps
ease the structure data interpretation. Both PDFs have been fit with structure
models and the way in that the underlying cubic zinc-blende lattice of
In_(0.5)Ga_(0.5)As semiconductor alloy distorts locally to accommodate the
distinct In-As and Ga-As bond lengths present has been quantified.Comment: 9 pages, 7 figur
NOD2/RICK-dependent β-defensin 2 regulation is protective for nontypeable Haemophilus influenzae-induced middle ear infection.
Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media
Quickest Paths in Simulations of Pedestrians
This contribution proposes a method to make agents in a microscopic
simulation of pedestrian traffic walk approximately along a path of estimated
minimal remaining travel time to their destination. Usually models of
pedestrian dynamics are (implicitly) built on the assumption that pedestrians
walk along the shortest path. Model elements formulated to make pedestrians
locally avoid collisions and intrusion into personal space do not produce
motion on quickest paths. Therefore a special model element is needed, if one
wants to model and simulate pedestrians for whom travel time matters most (e.g.
travelers in a station hall who are late for a train). Here such a model
element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.
Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs
- …