34 research outputs found

    Wet-processed n-type OTFTs utilizing highly-stable colloids of a perylene diimide derivative

    Get PDF
    Here we propose and demonstrate a new approach to wet-processed organic thin-film transistors utilizing highly-stable colloids of small molecular organic semiconductors prepared by laser ablation technique. Highly stable N,N′-ditridecyl-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C13) colloids of 0.1 wt% concentration were prepared successfully by laser ablation technique in acetonitrile. Mean particle size of the prepared PTCDI-C13 colloid measured by dynamic light scattering method was smaller than 50 nm which is also confirmed by a transmission electron microscope observation. By simple drop-casting of prepared PTCDI-C13 colloids, typical n-type OTFTs with good saturation properties were fabricated successfully. The highest electron mobility was 1.1 × 10−3 cm2/Vs and increased up to 0.027 cm2/Vs by post-annealing treatment.ArticleORGANIC ELECTRONICS. 14(1):19-25 (2013)journal articl

    Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The EGFR and HER2 genes are located on chromosomes 7 and 17, respectively. They are therapeutic targets in some tumors. The TOP2A gene, which is located near HER2 on chromosome 17, is the target of many chemotherapeutic agents, and co-amplification of HER2 and TOP2A has been described in several tumor types. Herein, we investigated the gene status of EGFR, HER2, and TOP2A in Chinese gastric carcinoma patients. We determined the rate of polysomy for chromosomes 7 and 17, and we attempted to clarify the relationship between EGFR, HER2, and TOP2A gene copy number and increased expression of their encoded proteins. Furthermore, we tried to address the relationship between alterations in EGFR, HER2, and TOP2A and chromosome polysomy.</p> <p>Methods</p> <p>One hundred cases of formalin fixed and paraffin embedded tumor tissues from Chinese gastric carcinoma patients were investigated by immunohistochemistry and fluorescence in situ hybridization (FISH) methods.</p> <p>Results</p> <p>Forty-two percent of the cases showed EGFR overexpression; 16% showed EGFR FISH positive; 6% showed HER2 overexpression; and 11% showed HER2 gene amplification, including all six HER2 overexpression cases. TOP2A nuclear staining (nuclear index, NI) was determined in all 100 tumors: NI values ranged from 0.5 – 90%. Three percent of the tumors showed TOP2A gene amplification, which were all accompanied by HER2 gene amplification. Nineteen percent of the tumors showed chromosome 7 polysomy, and 16% showed chromosome 17 polysomy. Chromosome 7 polysomy correlated significantly with EGFR FISH-positivity, but was not associated with EGFR overexpression. HER2 overexpression associated significantly with HER2 gene amplification. TOP2A gene amplification was significantly associated with HER2 gene amplification. No relationship was found between alterations in the <it>EGFR</it>, <it>HER2</it>, and <it>TOP2A </it>genes and clinicopathologic variables of gastric carcinoma.</p> <p>Conclusion</p> <p>The data from our study suggest that chromosome 7 polysomy may be responsible for increased EGFR gene copy number in gastric carcinomas, and that HER2 gene amplification may be the major reason for HER2 protein overexpression. A combined investigation of the gene status of EGFR, HER2, and TOP2A should facilitate the identification of a target therapeutic regimen for gastric carcinoma patients.</p

    Pretreatment of polysaccharidic wastes with cellulolytic Aspergillus fumigatus for enhanced production of biohythane in a dual-stage process

    No full text
    Biological pretreatment of polysaccharidic wastes (PWs) is a cost-effective and environmentally friendly approach to improve the digestibility and utilization of these valuable substrates in dual-stage biohythane production. In order to reduce the prolonged incubation time and loss of carbohydrate during the pretreatment of PWs with Aspergillus fumigatus, a systematic optimization using Taguchi methodology resulted in an unprecedented recovery of soluble carbohydrates (362.84 mg g−1) within 5 days. The disruption and fragmentation of lignocellulosic structures in PWs, and possible saccharification of cellulose and hemicellulose components, increased its digestibility. A dual-stage biohythane production with pretreated PWs showed increased yield (214.13 mL g−1 VSadded), which was 56% higher than the corresponding value with the untreated PWs. This resulted in 47% higher energy recovery as biohythane in pretreated biomass compared to untreated biomass. Optimized fungal pretreatment is, therefore, an effective method to improve the digestibility of PWs and its subsequent conversion to biohythane
    corecore