584 research outputs found

    Anti-inflammatory activity of hydrosols from Tetragonia tetragonoides in LPS-induced RAW 264.7 cells

    Get PDF
    The present study was performed to investigate the anti-inflammatory activity of Tetragonia tetragonoides hydro- sols (TTH) and its underlying mechanism in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Gas chromatog- raphy (GC) coupled with mass spectrometry and retention index calculations showed that TTH were mainly com- posed of tetratetracontane (29.5 %), nonacosane (27.6 %), and oleamide (17.1 %). TTH significantly decreased the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin (IL)-6, and IL-1β in LPS-stimulated RAW 264.7 cells. Consistent with these observations, TTH treatment decreased the protein expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). The molecular mechanism of its anti-inflamma- tory activity was found to be associated with inhibition of nuclear factor-kappa B (NF-κB) phosphorylation and nuclear translocation of NF-κB 65. Furthermore, TTH markedly suppressed the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs). Taken together, these data indicate that TTH exerts an anti-inflam- matory activity by inhibiting the NF-κB and MAPK signaling pathways in LPS-stimulated RAW 264.7 cells

    Endoscopic Ultrasound-Guided Drainage without Fluoroscopic Guidance for Extraluminal Complicated Cysts

    Get PDF
    Background. Endoscopic ultrasound- (EUS-) guided drainage is generally performed under fluoroscopic guidance. However, improvements in endoscopic and EUS techniques and experience have led to questions regarding the usefulness of fluoroscopy. This study aimed to retrospectively evaluate the safety and efficacy of EUS-guided drainage of extraluminal complicated cysts without fluoroscopic guidance. Methods. Patients who had undergone nonfluoroscopic EUS-guided drainage of extraluminal complicated cysts were enrolled. Drainage was performed via a transgastric, transduodenal, or transrectal approach. Single or double 7 Fr double pigtail stents were inserted. Results. Seventeen procedures were performed in 15 patients in peripancreatic fluid collections (n=13) and pelvic abscesses (n=4). The median lesion size was 7.1 cm (range: 2.8–13.0 cm), and the mean time spent per procedure was 26.2±9.8 minutes (range: 16–50 minutes). Endoscopic drainage was successful in 16 of 17 (94.1%) procedures. There were no complications. All patients experienced symptomatic improvement and revealed partial to complete resolution according to follow-up computed tomography findings. Two patients developed recurrent cysts that were drained during repeat procedures, with eventual complete resolution. Conclusion. EUS-guided drainage without fluoroscopic guidance is a technically feasible, safe, and effective procedure for the treatment of extraluminal complicated cysts

    3D Graphics System with VLIW Processor for Geometry Acceleration

    Get PDF
    Abstract To process enormous 3D data, we have designed a VLIW (Very Long Instruction Word

    Вихретоковый анизотропный термоэлектрический первичный преобразователь лучистого потока

    Get PDF
    Представлена оригинальная конструкция первичного преобразователя лучистого потока, который может служить основой для создания приемника неселективного излучения с повышенной чувствительностью

    Graphene-Based Nanocomposites for Energy Storage

    Get PDF
    Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene-based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene-based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high-performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)-ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)-ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage-related applications are discussed
    corecore