101 research outputs found
The collaborative cross strains and their founders vary widely in cocaine-induced behavioral sensitization
Cocaine use and overdose deaths attributed to cocaine have increased significantly in the United States in the last 10 years. Despite the prevalence of cocaine use disorder (CUD) and the personal and societal problems it presents, there are currently no approved pharmaceutical treatments. The absence of treatment options is due, in part, to our lack of knowledge about the etiology of CUDs. There is ample evidence that genetics plays a role in increasing CUD risk but thus far, very few risk genes have been identified in human studies. Genetic studies in mice have been extremely useful for identifying genetic loci and genes, but have been limited to very few genetic backgrounds, leaving substantial phenotypic, and genetic diversity unexplored. Herein we report the measurement of cocaine-induced behavioral sensitization using a 19-day protocol that captures baseline locomotor activity, initial locomotor response to an acute exposure to cocaine and locomotor sensitization across 5 exposures to the drug. These behaviors were measured in 51 genetically diverse Collaborative Cross (CC) strains along with their inbred founder strains. The CC was generated by crossing eight genetically diverse inbred strains such that each inbred CC strain has genetic contributions from each of the founder strains. Inbred CC mice are infinitely reproducible and provide a stable, yet diverse genetic platform on which to study the genetic architecture and genetic correlations among phenotypes. We have identified significant differences in cocaine locomotor sensitivity and behavioral sensitization across the panel of CC strains and their founders. We have established relationships among cocaine sensitization behaviors and identified extreme responding strains that can be used in future studies aimed at understanding the genetic, biological, and pharmacological mechanisms that drive addiction-related behaviors. Finally, we have determined that these behaviors exhibit relatively robust heritability making them amenable to future genetic mapping studies to identify addiction risk genes and genetic pathways that can be studied as potential targets for the development of novel therapeutics
Quantum Physics Exploring Gravity in the Outer Solar System: The Sagas Project
We summarise the scientific and technological aspects of the SAGAS (Search
for Anomalous Gravitation using Atomic Sensors) project, submitted to ESA in
June 2007 in response to the Cosmic Vision 2015-2025 call for proposals. The
proposed mission aims at flying highly sensitive atomic sensors (optical clock,
cold atom accelerometer, optical link) on a Solar System escape trajectory in
the 2020 to 2030 time-frame. SAGAS has numerous science objectives in
fundamental physics and Solar System science, for example numerous tests of
general relativity and the exploration of the Kuiper belt. The combination of
highly sensitive atomic sensors and of the laser link well adapted for large
distances will allow measurements with unprecedented accuracy and on scales
never reached before. We present the proposed mission in some detail, with
particular emphasis on the science goals and associated measurements.Comment: 39 pages. Submitted in abridged version to Experimental Astronom
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
Search for the Chiral Magnetic Effect in Au+Au collisions at GeV with the STAR forward Event Plane Detectors
A decisive experimental test of the Chiral Magnetic Effect (CME) is
considered one of the major scientific goals at the Relativistic Heavy-Ion
Collider (RHIC) towards understanding the nontrivial topological fluctuations
of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is
expected to result in a charge separation phenomenon across the reaction plane,
whose strength could be strongly energy dependent. The previous CME searches
have been focused on top RHIC energy collisions. In this Letter, we present a
low energy search for the CME in Au+Au collisions at
GeV. We measure elliptic flow scaled charge-dependent correlators relative to
the event planes that are defined at both mid-rapidity and at
forward rapidity . We compare the results based on the
directed flow plane () at forward rapidity and the elliptic flow plane
() at both central and forward rapidity. The CME scenario is expected
to result in a larger correlation relative to than to , while
a flow driven background scenario would lead to a consistent result for both
event planes[1,2]. In 10-50\% centrality, results using three different event
planes are found to be consistent within experimental uncertainties, suggesting
a flow driven background scenario dominating the measurement. We obtain an
upper limit on the deviation from a flow driven background scenario at the 95\%
confidence level. This work opens up a possible road map towards future CME
search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Environmental heterogeneity modulates the effect of biodiversity on the spatial variability of grassland biomass
Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions
The present and future of QCD
This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
ATHENA detector proposal — a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider
ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity. This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges
391. Behavioral consequences of corticostriatal dysfunction produced by phencyclidine administration
The Alpha-1 Adrenergic Agonist, Cirazoline, Impairs Spatial Working Memory Performance in Aged Monkeys
- …
