36 research outputs found
SARS-CoV-2 spike HexaPro formulated in aluminium hydroxide and administered in an accelerated vaccination schedule partially protects Syrian Hamsters against viral challenge despite low neutralizing antibody responses
SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease
Interferometric Single-Shot Parity Measurement in an InAs-Al Hybrid Device
The fusion of non-Abelian anyons or topological defects is a fundamental
operation in measurement-only topological quantum computation. In topological
superconductors, this operation amounts to a determination of the shared
fermion parity of Majorana zero modes. As a step towards this, we implement a
single-shot interferometric measurement of fermion parity in indium
arsenide-aluminum heterostructures with a gate-defined nanowire. The
interferometer is formed by tunnel-coupling the proximitized nanowire to
quantum dots. The nanowire causes a state-dependent shift of these quantum
dots' quantum capacitance of up to 1 fF. Our quantum capacitance measurements
show flux h/2e-periodic bimodality with a signal-to-noise ratio of 1 in 3.7
s at optimal flux values. From the time traces of the quantum capacitance
measurements, we extract a dwell time in the two associated states that is
longer than 1 ms at in-plane magnetic fields of approximately 2 T. These
results are consistent with a measurement of the fermion parity encoded in a
pair of Majorana zero modes that are separated by approximately 3 m and
subjected to a low rate of poisoning by non-equilibrium quasiparticles. The
large capacitance shift and long poisoning time enable a parity measurement
error probability of 1%.Comment: Added data on a second measurement of device A and a measurement of
device B, expanded discussion of a trivial scenario. Refs added, author list
update