67,403 research outputs found
Technology advancement of the static feed water electrolysis process
Some results are presented of a research and development program to continue the development of a method to generate oxygen for crew metabolic consumption during extended manned space flights. The concept being pursued is that of static feed water electrolysis. Specific major results of the work included: (1) completion of a 30-day electrode test using a Life Systems, Inc.-developed high performance catalyst. During startup the cell voltages were as low as 1.38 V at current densities of 108 mA/sq cm (100 ASF) and temperatures of 355 K (180 F). At the end of 30 days of testing the cell voltages were still only 1.42 V at 108 mA/sq cm, (2) determination that the Static Feed Water Electrolysis Module does not release an aerosol of the cell electrolyte into the product gas streams after a break-in period of 24 hours following a new electrolyte charge, and (3) completion of a detailed design analysis of an electrochemical Oxygen Generation Subsystem at a three-man level (4.19 kg/day (9.24 lb/day) of oxygen)
Inverse Statistics in the Foreign Exchange Market
We investigate intra-day foreign exchange (FX) time series using the inverse
statistic analysis developed in [1,2]. Specifically, we study the time-averaged
distributions of waiting times needed to obtain a certain increase (decrease)
in the price of an investment. The analysis is performed for the Deutsch
mark (DM) against the US. With high statistical
significance, the presence of "resonance peaks" in the waiting time
distributions is established. Such peaks are a consequence of the trading
habits of the markets participants as they are not present in the corresponding
tick (business) waiting time distributions. Furthermore, a new {\em stylized
fact}, is observed for the waiting time distribution in the form of a power law
Pdf. This result is achieved by rescaling of the physical waiting time by the
corresponding tick time thereby partially removing scale dependent features of
the market activity.Comment: 8 pages. Accepted Physica
Compressive Parameter Estimation for Sparse Translation-Invariant Signals Using Polar Interpolation
We propose new compressive parameter estimation algorithms that make use of
polar interpolation to improve the estimator precision. Our work extends
previous approaches involving polar interpolation for compressive parameter
estimation in two aspects: (i) we extend the formulation from real non-negative
amplitude parameters to arbitrary complex ones, and (ii) we allow for mismatch
between the manifold described by the parameters and its polar approximation.
To quantify the improvements afforded by the proposed extensions, we evaluate
six algorithms for estimation of parameters in sparse translation-invariant
signals, exemplified with the time delay estimation problem. The evaluation is
based on three performance metrics: estimator precision, sampling rate and
computational complexity. We use compressive sensing with all the algorithms to
lower the necessary sampling rate and show that it is still possible to attain
good estimation precision and keep the computational complexity low. Our
numerical experiments show that the proposed algorithms outperform existing
approaches that either leverage polynomial interpolation or are based on a
conversion to a frequency-estimation problem followed by a super-resolution
algorithm. The algorithms studied here provide various tradeoffs between
computational complexity, estimation precision, and necessary sampling rate.
The work shows that compressive sensing for the class of sparse
translation-invariant signals allows for a decrease in sampling rate and that
the use of polar interpolation increases the estimation precision.Comment: 13 pages, 5 figures, to appear in IEEE Transactions on Signal
Processing; minor edits and correction
Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]
We demonstrate that a minor modification of the extrapolation proposed by
Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the
Hartree-Fock limit in conjunction with correlation consistent basis sets.
Specifically, a two-point extrapolation of the form
yields HF limits
with an RMS error of 0.1 millihartree using aug-cc-pVQZ and
aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and
aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres
Static feed water electrolysis module
An advanced static feed water electrolysis module (SFWEM) and associated instrumentation for generating breathable O2 was developed. The system also generates a H2 byproduct for use in an air revitalization system for O2 recovery from metabolic CO2. Special attention was given to: (1) eliminating water feed compartment degassing, (2) eliminating need for zero gravity condenser/separators, (3) increasing current density capability, and (4) providing a self contained module so that operation is independent of laboratory instrumentation and complicated startup/shutdown procedures
High quality epitaxial ZnSe and the relationship between electron mobility and photoluminescence characteristics
High quality epitaxial layers of nominally undoped ZnSe have been grown by metalorganic chemical vapor deposition at low temperature (325 °C) and pressure (30 Torr), using dimethylzinc and hydrogen selenide. All layers were unintentionally doped n type with net carrier concentrations of 6.4×10^(14)–1.5×10^(16) cm^(−3) and exhibited very high mobility at room temperature (up to 500 cm2/V s) as well as at 77 K, where the measured value of 9250 cm^2/V s is the highest so far reported for vapor phase growth. Additional evidence for the high quality of the material is provided by photoluminescence. Experimental results indicate a correlation between the photoluminescence characteristics and the electrical properties that may be useful in assessing the quality of ZnSe films
Crystal structure prediction using the Minima Hopping method
A structure prediction method is presented based on the Minima Hopping
method. Optimized moves on the configurational enthalpy surface are performed
to escape local minima using variable cell shape molecular dynamics by aligning
the initial atomic and cell velocities to low curvature directions of the
current minimum. The method is applied to both silicon crystals and binary
Lennard-Jones mixtures and the results are compared to previous investigations.
It is shown that a high success rate is achieved and a reliable prediction of
unknown ground state structures is possible.Comment: 9 pages, 6 figures, novel approach in structure prediction, submitted
to the Journal of Chemical Physic
Nonuniversal Critical Spreading in Two Dimensions
Continuous phase transitions are studied in a two dimensional nonequilibrium
model with an infinite number of absorbing configurations. Spreading from a
localized source is characterized by nonuniversal critical exponents, which
vary continuously with the density phi in the surrounding region. The exponent
delta changes by more than an order of magnitude, and eta changes sign. The
location of the critical point also depends on phi, which has important
implications for scaling. As expected on the basis of universality, the static
critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques
Household Welfare Cost of the Indonesian Macroeconomic Crisis
A theoretically consistent incomplete demand system is estimated to quantify the cost of the 1997 microeconomic crisis. Welfare cost per person was 26.12 billion total cost. This amount is equivalent to agriculture's GDP contribution, and sufficient to pay for Indonesia's total annual government budget.Consumer/Household Economics,
- …
