167 research outputs found

    Halpha-Derived Star-Formation Rates For Three z ~ 0.75 EDisCS Galaxy Clusters

    Full text link
    We present Halpha-derived star-formation rates (SFRs) for three z ~ 0.75 galaxy clusters. Our 1 sigma flux limit corresponds to a star-formation rate of 0.10-0.24 solar mass per year, and our minimum reliable Halpha + [N II] rest-frame equivalent width is 10\AA. We show that Halpha narrowband imaging is an efficient method for measuring star formation in distant clusters. In two out of three clusters, we find that the fraction of star-forming galaxies increases with projected distance from the cluster center. We also find that the fraction of star-forming galaxies decreases with increasing local galaxy surface density in the same two clusters. We compare the median rate of star formation among star-forming cluster galaxies to a small sample of star-forming field galaxies from the literature and find that the median cluster SFRs are \~50% less than the median field SFR. We characterize cluster evolution in terms of the mass-normalized integrated cluster SFR and find that the z ~ 0.75 clusters have more SFR per cluster mass on average than the z <= 0.4 clusters from the literature. The interpretation of this result is complicated by the dependence of the mass-normalized SFR on cluster mass and the lack of sufficient overlap in the mass ranges covered by the low and high redshift samples. We find that the fraction and luminosities of the brightest starburst galaxies at z ~ 0.75 are consistent with their being progenitors of the post-starburst galaxies at z ~ 0.45 if the post-starburst phase lasts several (~5) times longer than the starburst phase.Comment: Accepted for publication in ApJ, 20 pages, 24 figure

    The build-up of the colour-magnitude relation in galaxy clusters since z~0.8

    Get PDF
    Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour-magnitude relation has evolved since z~0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high redshift EDisCS clusters exhibit a significant "deficit" of faint red galaxies. Combining clusters in three different redshift bins, and defining as `faint' all galaxies in the range 0.4 > L/L* > 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z~0.8 to z~0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour-magnitude diagram of high redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved onto the red-sequence below z~0.8.Comment: 15 pages, 10 figures, accepted for publication in MNRA

    The relation between star formation, morphology and local density in high redshift clusters and groups

    Get PDF
    We investigate how the [OII] properties and the morphologies of galaxies in clusters and groups at z=0.4-0.8 depend on projected local galaxy density, and compare with the field at similar redshifts and clusters at low-z. In both nearby and distant clusters, higher-density regions contain proportionally fewer star-forming galaxies, and the average [OII] equivalent width of star-forming galaxies is independent of local density. However, in distant clusters the average current star formation rate (SFR) in star-forming galaxies seems to peak at densities ~15-40 galaxies Mpc^{-2}. At odds with low-z results, at high-z the relation between star-forming fraction and local density varies from high- to low-mass clusters. Overall, our results suggest that at high-z the current star formation (SF) activity in star-forming galaxies does not depend strongly on global or local environment, though the possible SFR peak seems at odds with this conclusion. We find that the cluster SFR normalized by cluster mass anticorrelates with mass and correlates with the star-forming fraction. These trends can be understood given a) that the average star-forming galaxy forms about 1 Msun/yr in all clusters; b) that the total number of galaxies scales with cluster mass and c) the dependence of star-forming fraction on cluster mass. We present the morphology-density (MD) relation for our z=0.4-0.8 clusters, and uncover that the decline of the spiral fraction with density is entirely driven by galaxies of types Sc or later. For galaxies of a given Hubble type, we see no evidence that SF properties depend on local environment. In contrast with recent findings at low-z, in our distant clusters the SF-density relation and the MD-relation are equivalent, suggesting that neither of the two is more fundamental than the other.(abr.)Comment: 21 pages, 14 figures, accepted for publication in Ap

    Determining the halo mass scale where galaxies lose their gas

    Get PDF
    A major question in galaxy formation is how the gas supply that fuels activity in galaxies is modulated by their environment. We use spectroscopy of a set of well characterized clusters and groups at 0.410.40.410.4) of these old galaxies with weak [OII] emission. We use line ratios and compare to studies of local early type galaxies to conclude that this gas is likely excited by post-AGB stars and hence represents a diffuse gas component in the galaxies. For cluster and group galaxies the fraction with EW([OII])>5>5\AA\ is f[OII]=0.08−0.02+0.03f_{[OII]}=0.08^{+0.03}_{-0.02} and f[OII]=0.06−0.04+0.07f_{[OII]}=0.06^{+0.07}_{-0.04} respectively. For field galaxies we find f[OII]=0.27−0.06+0.07f_{[OII]}=0.27^{+0.07}_{-0.06}, representing a 2.8σ\sigma difference between the [OII] fractions for old galaxies between the different environments. We conclude that a population of old galaxies in all environments has ionized gas that likely stems from stellar mass loss. In the field galaxies also experience gas accretion from the cosmic web and in groups and clusters these galaxies have had their gas accretion shut off by their environment. Additionally, galaxies with emission preferentially avoid the virialized region of the cluster in position-velocity space. We discuss the implications of our results, among which is that gas accretion shutoff is likely effective at group halo masses (log~M/{\cal M}/\msol>12.8>12.8) and that there are likely multiple gas removal processes happening in dense environments

    The build-up of the colour-magnitude relation in galaxy clusters since z∌ 0.8

    Get PDF
    Using galaxy clusters from the ESO Distant Cluster Survey, we study how the distribution of galaxies along the colour-magnitude relation has evolved since z∌ 0.8. While red-sequence galaxies in all these clusters are well described by an old, passively evolving population, we confirm our previous finding of a significant evolution in their luminosity distribution as a function of redshift. When compared to galaxy clusters in the local Universe, the high-redshift EDisCS clusters exhibit a significant deficit of faint red galaxies. Combining clusters in three different redshift bins, and defining as ‘faint' all galaxies in the range 0.4 ≳L/L*≳ 0.1, we find a clear decrease in the luminous-to-faint ratio of red galaxies from z∌ 0.8 to ∌0.4. The amount of such a decrease appears to be in qualitative agreement with predictions of a model where the blue bright galaxies that populate the colour-magnitude diagram of high-redshift clusters, have their star formation suppressed by the hostile cluster environment. Although model results need to be interpreted with caution, our findings clearly indicate that the red-sequence population of high-redshift clusters does not contain all progenitors of nearby red-sequence cluster galaxies. A significant fraction of these must have moved on to the red sequence below z∌ 0.

    Dust-Obscured Star-Formation in Intermediate Redshift Galaxy Clusters

    Get PDF
    We present Spitzer MIPS 24-micron observations of 16 0.4<z<0.8 galaxy clusters drawn from the ESO Distant Cluster Survey (EDisCS). This is the first large 24-micron survey of clusters at intermediate redshift. The depth of our imaging corresponds to a total IR luminosity of 8x10^10 Lsun, just below the luminosity of luminous infrared galaxies (LIRGs), and 6^{+1}_{-1}% of M_V < -19 cluster members show 24-micron emission at or above this level. We compare with a large sample of coeval field galaxies and find that while the fraction of cluster LIRGs lies significantly below that of the field, the IR luminosities of the field and cluster galaxies are consistent. However, the stellar masses of the EDisCS LIRGs are systematically higher than those of the field LIRGs. A comparison with optical data reveals that ~80% of cluster LIRGs are blue and the remaining 20% lie on the red sequence. Of LIRGs with optical spectra, 88^{+4}_{-5}% show [O II] emission with EW([O II])>5A, and ~75% exhibit optical signatures of dusty starbursts. On average, the fraction of cluster LIRGs increases with projected cluster-centric radius but remains systematically lower than the field fraction over the area probed (< 1.5xR200). The amount of obscured star formation declines significantly over the 2.4 Gyr interval spanned by the EDisCS sample, and the rate of decline is the same for the cluster and field populations. Our results are consistent with an exponentially declining LIRG fraction, with the decline in the field delayed by ~1 Gyr relative to the clusters.Comment: 15 pages, 9 figure

    A high-affinity, bivalent PDZ domain inhibitor complexes PICK1 to alleviate neuropathic pain

    Get PDF
    Maladaptive plasticity involving increased expression of AMPA‐type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell‐permeable, high‐affinity (~2 nM) peptide inhibitor, Tat‐P4_4‐(C5)2_2, of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat‐P4_4‐(C5)2_2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA‐receptor surface expression in vivo. Moreover, Tat‐P4_4‐(C5)2_2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat‐P4_4‐(C5)2_2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non‐tandem protein–protein interaction domains

    The ESO Distant Cluster Sample: galaxy evolution and environment out to z=1

    Full text link
    The ESO Distant Cluster Survey (EDisCS, P.I. Simon D.M. White, LP 166.A-0162) is an ESO large programme aimed at studying clusters and cluster galaxies at z=0.4-1. How different is the evolution of the star formation activity in clusters, in groups and in the field? Does it depend on cluster mass and/or the local galaxy density? How relevant are starburst and post-starburst galaxies in the different environments? Is there an evolution in the galaxies' structures, and if so, is this related to the changes in their star formation activity? These are some of the main questions that have been investigated using the EDisCS dataset.Comment: to appear in The Messenger, issue June 200
    • 

    corecore