241 research outputs found

    Regulation of global CD8+ T-cell positioning by the actomyosin cytoskeleton

    Get PDF
    CD8+ T cells have evolved as one of the most motile mammalian cell types, designed to continuously scan peptide–major histocompatibility complexes class I on the surfaces of other cells. Chemoattractants and adhesion molecules direct CD8+ T‐cell homing to and migration within secondary lymphoid organs, where these cells colocalize with antigen‐presenting dendritic cells in confined tissue volumes. CD8+ T‐ cell activation induces a switch to infiltration of non‐lymphoid tissue (NLT), which differ in their topology and biophysical properties from lymphoid tissue. Here, we provide a short overview on regulation of organism‐wide trafficking patterns during naive T‐cell recirculation and their switch to non‐lymphoid tissue homing during activation. The migratory lifestyle of CD8+ T cells is regulated by their actomyosin cytoskeleton, which translates chemical signals from surface receptors into mechanical work. We explore how properties of the actomyosin cytoskeleton and its regulators affect CD8+ T cell function in lymphoid and non‐lymphoid tissue, combining recent findings in the field of cell migration and actin network regulation with tissue anatomy. Finally, we hypothesize that under certain conditions, intrinsic regulation of actomyosin dynamics may render NLT CD8+ T‐cell populations less dependent on input from extrinsic signals during tissue scanning

    Toolbox for in vivo imaging of host-parasite interactions at multiple scales

    Get PDF
    Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host-pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology

    T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field

    Get PDF
    T lymphocytes are highly dynamic elements of the immune system with a tightly regulated migration. T cell-based transfer therapies are promising therapeutic approaches which in vivo efficacy is often limited by the small proportion of administered cells that reaches the region of interest. Manipulating T cell localisation to improve specific targeting will increase the effectiveness of these therapies. Nanotechnology has been successfully used for localized release of drugs and biomolecules. In particular, magnetic nanoparticles (MNPs) loaded with biomolecules can be specifically targeted to a location by an external magnetic field (EMF). The present work studies whether MNP-loaded T cells could be targeted and retained in vitro and in vivo at a site of interest with an EMF.Results: T cells were unable to internalize the different MNPs used in this study, which remained in close association with the cell membrane. T cells loaded with an appropriate MNP concentration were attracted to an EMF and retained in an in vitro capillary flow-system. MNP-loaded T cells were also magnetically retained in the lymph nodes after adoptive transfer in in vivo models. This enhanced in vivo retention was in part due to the EMF application and to a reduced circulating cell speed within the organ. This combined use of MNPs and EMFs did not alter T cell viability or function.Conclusions: These studies reveal a promising approach to favour cell retention that could be implemented to improve cell- based therapy

    CXCL12 Mediates CCR7-independent Homing of Central Memory Cells, But Not Naive T Cells, in Peripheral Lymph Nodes

    Get PDF
    Central memory CD8+ T cells (TCM) confer superior protective immunity against infections compared with other T cell subsets. TCM recirculate mainly through secondary lymphoid organs, including peripheral lymph nodes (PLNs). Here, we report that TCM, unlike naive T cells, can home to PLNs in both a CCR7-dependent and -independent manner. Homing experiments in paucity of lymph node T cells (plt/plt) mice, which do not express CCR7 ligands in secondary lymphoid organs, revealed that TCM migrate to PLNs at ∌20% of wild-type (WT) levels, whereas homing of naive T cells was reduced by 95%. Accordingly, a large fraction of endogenous CD8+ T cells in plt/plt PLNs displayed a TCM phenotype. Intravital microscopy of plt/plt subiliac lymph nodes showed that TCM rolled and firmly adhered (sticking) in high endothelial venules (HEVs), whereas naive T cells were incapable of sticking. Sticking of TCM in plt/plt HEVs was pertussis toxin sensitive and was blocked by anti-CXCL12 (SDF-1α). Anti-CXCL12 also reduced homing of TCM to PLNs in WT animals by 20%, indicating a nonredundant role for this chemokine in the presence of physiologic CCR7 agonists. Together, these data distinguish naive T cells from TCM, whereby only the latter display greater migratory flexibility by virtue of their increased responsiveness to both CCR7 ligands and CXCL12 during homing to PLN

    Ibrutinib does not impact CCR7-mediated homeostatic migration in T-cells from chronic lymphocytic leukemia patients

    Full text link
    Bruton’s tyrosine kinase inhibitor ibrutinib has significantly changed treatment landscape in chronic lymphocytic leukemia (CLL). Growing evidence supports ibrutinib to work beyond the effect on tumor cells by means of, for example, restoring functionality of the T-cell compartment and increasing circulating T-cell numbers. Recent evidence suggests T-cell enhanced expansion, rather than increased egress from secondary lymphoid organs (SLO), as a root cause for ibrutinib-induced lymphocytosis. However, whether the latter physiological change is also a consequence of a forced retention in blood remains undisclosed. Since CCR7 is the main chemokine receptor taking over the homing of T-cells from peripheral compartments to lymph nodes and other SLO, we aimed to investigate the impact of ibrutinib on CCR7 functionality in T-cells. To this end, we documented receptor expression in T-cells from a large cohort of ibrutinib-treated CLL patients, and performed different in vivo and in vitro migration models. Overall, our data confirm that CCR7 expression or receptor-mediated migration in CLL T-cells is not affected by ibrutinib. Furthermore, it does not modulate CCR7-driven homing nor nodal interstitial migration. Together, our results support that ibrutinib-induced CLL T-cell accumulation in the blood stream is not derived from an impairment of CCR7-driven recirculation between the SLO and bloodstream, and therefore T-cell expansion is the most plausible causeA.M.-J. was partially financed by Alfonso Martín Escudero Foundation. The other authors received no grants for this wor

    Simulating CXCR5 Dynamics in Complex Tissue Microenvironments

    Get PDF
    To effectively navigate complex tissue microenvironments, immune cells sense molecular concentration gradients using G-protein coupled receptors. However, due to the complexity of receptor activity, and the multimodal nature of chemokine gradients in vivo, chemokine receptor activity in situ is poorly understood. To address this issue, we apply a modelling and simulation approach that permits analysis of the spatiotemporal dynamics of CXCR5 expression within an in silico B-follicle with single-cell resolution. Using this approach, we show that that in silico B-cell scanning is robust to changes in receptor numbers and changes in individual kinetic rates of receptor activity, but sensitive to global perturbations where multiple parameters are altered simultaneously. Through multi-objective optimization analysis we find that the rapid modulation of CXCR5 activity through receptor binding, desensitization and recycling is required for optimal antigen scanning rates. From these analyses we predict that chemokine receptor signaling dynamics regulate migration in complex tissue microenvironments to a greater extent than the total numbers of receptors on the cell surface

    Toolbox for in vivo imaging of host–parasite interactions at multiple scales

    Get PDF
    Animal models have for long been pivotal for parasitology research. Over the last few years, techniques such as intravital, optoacoustic and magnetic resonance imaging, optical projection tomography, and selective plane illumination microscopy developed promising potential for gaining insights into host–pathogen interactions by allowing different visualization forms in vivo and ex vivo. Advances including increased resolution, penetration depth, and acquisition speed, together with more complex image analysis methods, facilitate tackling biological problems previously impossible to study and/or quantify. Here we discuss advances and challenges in the in vivo imaging toolbox, which hold promising potential for the field of parasitology

    Initial viral inoculum determines kinapse-and synapse-like t cell motility in reactive lymph nodes

    Get PDF
    T cell activation in lymphoid tissue occurs through interactions with cognate peptide- major histocompatibility complex (pMHC)-presenting dendritic cells (DCs). Intravital imaging studies using ex vivo peptide-pulsed DCs have uncovered that cognate pMHC levels imprint a wide range of dynamic contacts between these two cell types. T cell—DC interactions vary between transient, “kinapse-like” contacts at low to moderate pMHC levels to immediate “synapse-like” arrest at DCs displaying high pMHC levels. To date, it remains unclear whether this pattern is recapitulated when the immune system faces a replicative agent, such as a virus, at low and high inoculum. Here, we locally administered low and high inoculum of lymphocytic choriomeningitis virus (LCMV) in mice to follow activation parameters of Ag-specific CD4+ and CD8+ T cells in draining lymph nodes (LNs) during the first 72 h post infection. We correlated these data with kinapse- and synapse-like motility patterns of Ag-specific T cells obtained by intravital imaging of draining LNs. Our data show that initial viral inoculum controls immediate synapse-like T cell arrest vs. continuous kinapse-like motility. This remains the case when the viral inoculum and thus the inflammatory microenvironment in draining LNs remains identical but cognate pMHC levels vary. Our data imply that the Ag-processing capacity of draining LNs is equipped to rapidly present high levels of cognate pMHC when antigenic material is abundant. Our findings further suggest that widespread T cell arrest during the first 72 h of an antimicrobial immune responses is not required to trigger proliferation. In sum, T cells adapt their scanning behavior according to available antigen levels during viral infections, with dynamic changes in motility occurring before detectable expression of early activation markers

    A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate–mediated egress

    Get PDF
    Recent observations using multiphoton intravital microscopy (MP-IVM) have uncovered an unexpectedly high lymphocyte motility within peripheral lymph nodes (PLNs). Lymphocyte-expressed intracellular signaling molecules governing interstitial movement remain largely unknown. Here, we used MP-IVM of murine PLNs to examine interstitial motility of lymphocytes lacking the Rac guanine exchange factor DOCK2 and phosphoinositide-3-kinase (PI3K)Îł, signaling molecules that act downstream of G protein–coupled receptors, including chemokine receptors (CKRs). T and B cells lacking DOCK2 alone or DOCK2 and PI3KÎł displayed markedly reduced motility inside T cell area and B cell follicle, respectively. Lack of PI3KÎł alone had no effect on migration velocity but resulted in increased turning angles of T cells. As lymphocyte egress from PLNs requires the sphingosine-1-phosphate (S1P) receptor 1, a Gαi protein–coupled receptor similar to CKR, we further analyzed whether DOCK2 and PI3KÎł contributed to S1P-triggered signaling events. S1P-induced cell migration was significantly reduced in T and B cells lacking DOCK2, whereas T cell–expressed PI3KÎł contributed to F-actin polymerization and protein kinase B phosphorylation but not migration. These findings correlated with delayed lymphocyte egress from PLNs in the absence of DOCK2 but not PI3KÎł, and a markedly reduced cell motility of DOCK2-deficient T cells in close proximity to efferent lymphatic vessels. In summary, our data support a central role for DOCK2, and to a lesser extent T cell–expressed PI3KÎł, for signal transduction during interstitial lymphocyte migration and S1P-mediated egress
    • 

    corecore