15 research outputs found
High elevation watersheds in the southern Appalachians: Indicators of sensitivity to acidic deposition and the potential for restoration through liming
Southern Appalachian high elevation watersheds have deep rocky soils with high organic matter content,
different vegetation communities, and receive greater inputs of acidic deposition compared to low elevation sites within the region. Since the implementation of the Clean Air Act Amendment in the 1990s, concentrations of acidic anions in rainfall have declined. However, some high elevation streams continue to show signs of chronic to episodic acidity, where acid neutralizing capacity (ANC) ranges from 0 to
20 ”eq L-1. We studied three 3rd order watersheds (North River in Cherokee National Forest, Santeetlah Creek in Nantahala National Forest, and North Fork of the French Broad in Pisgah National Forest) and selected four to six 1st order catchments within each watershed to represent a gradient in elevation (849â1526 m) and a range in acidic stream ANC values (11â50 leq L-1). Our objectives were to (1) identify biotic, physical and chemical catchment parameters that could be used as indices of stream ANC, pH and Ca:Al molar ratios and (2) estimate the lime required to restore catchments from the effects of excess acidity and increase base cation availability. We quantified each catchmentâs biotic, physical, and chemical characteristics and collected stream, O-horizon, and mineral soil samples for chemical analysis seasonally for one year. Using repeated measures analysis, we examined variability in stream chemistry and catchment characteristics; we used a nested split-plot design to identify catchment characteristics that were correlated with stream chemistry. Watersheds differed significantly and the catchments sampled provided a wide range of stream chemical, biotic, physical and chemical characteristics. Variability in stream ANC, pH, and Ca:Al molar ratio were significantly correlated with catchment vegetation characteristics (basal area, tree height, and tree diameter) as well as O-horizon nitrogen and aluminum concentrations. Total soil carbon and calcium (an indicator of parent material), were significant
covariates for stream ANC, pH and Ca:Al molar ratios. Lime requirement estimates did not differ among watersheds but this data will help select catchments for future restoration and lime application studies. Not surprisingly, this work found many vegetation and chemical characteristics that were useful indicators of stream acidity. However, some expected relationships such as concentrations of mineral soil extractable Ca and SO4 were not significant. This suggests that an extensive test of these indicators across the southern Appalachians will be required to identify high elevation forested catchments that would benefit from restoration activities
On the relations between complex systems and the factorial model of soil formation (with Discussion)
Soil formation rates on silicate parent material in alpine environments: Different approachesâdifferent results?
High-mountain soils develop in particularly sensitive environments. Consequently, deciphering and predicting what drives the rates of soil formation in such environments are a major challenge. In terms of soil production or formation from chemical weathering, the predominating perception for high-mountain soils and cold environments is often that the chemical weathering âportionâ of soil development is temperature-inhibited, often to the point of non-occurrence. Several concepts exist to determine long-term rates of soil formation and development. We present three different approaches: (1) quantification of soil formation from minimally eroded soils of known age using chronosequences (known surface age and soil thickness â SAST), (2) determination of soil residence times (SRT) and production rates through chemical weathering using (un)stable isotopes (e.g. 230Th/234U activity ratios), and (3) a steady state approach using cosmogenic isotopes (e.g. 10Be).
For each method, data from different climate zones, and particularly from high-mountains (alpine environment), are compared. The SAST and steady state approach give quite similar results for alpine environments (European Alps and the Wind River Range (Rocky Mountains, USA)). Using the SRT approach, soil formation rates in mountain areas (but having a temperate climate) do not differ greatly from the SAST and steady state approaches. Independent of the chosen approach, the results seem moderately comparable. Soil formation rates in high-mountain areas (alpine climate) range from very low to extremely high values and show a clear decreasing tendency with time. Very young soils have up to 3â4 orders of magnitude higher rates of development than old soils (105 to 106 yr). This apparently is a result of kinetic limits on weathering in regions having young surfaces and supply limits to weathering on old surfaces.
Due to the requirement for chemical weathering to occur, soil production rates cannot be infinitely high. Consequently, a speed limit must exist. In the literature, this limit has been set at about 320 to 450 t/km2/a. Our results from the SAST approach show, however, that in alpine areas soil formation easily reaches rates of up to 800â 2000 t/km2/a. These data are consistent with previous studies in mountain regions demonstrating that particularly young soils intensively weather, even under continuous seasonal snowpack and, thus, that the concept of âtemperature-controlledâ soil development (soil-forming intervals) in alpine regions must be reconsidered
The geochemistry of loess: Asian and North American deposits compared
Loess is widely distributed over Asia and North America and constitutes one of the most important surficial deposits that serve as terrestrial records of the Quaternary. The oldest Pleistocene loess in China is likely âŒ2.6 Ma, thus spanning much or all of the Pleistocene. In North America, most loess is no older than the penultimate glacial period, with the exception of Alaska, where the record may go back to âŒ3.0 Ma. On both continents, loess deposits date primarily to glacial periods, and interglacial or interstadial periods are represented by paleosols. Both glacial and non-glacial sources of silts that comprise the bulk of loess deposits are found on both continents. Although loess has been considered to be representative of the average upper continental crust, there are regionally distinctive compositions of loess in both Asia and North America. Loess deposits in Asia from Yakutia, Tajikistan, and China have compositionally distinct major element compositions, due to varying abundances of silicate minerals, carbonate minerals, and clay minerals. In North America, loess in the Mississippi River valley, the Great Plains, and Alaska are also distinguishable with regard to major element composition that reflects highly diverse source sediments. Trace element geochemistry (Sc-Th-Zr and the rare earth elements) also shows regional diversity of loess bodies, in both Asia and North America. On both continents, most loess bodies show significant contributions from later-cycle, altered sedimentary rocks, as opposed to direct derivation from igneous rocks. Further, some loess bodies have detectable contributions from mafic igneous rocks as well as major contributions from average, upper-crustal, felsic rocks. Intercalated paleosols in loess sections show geochemical compositions that differ significantly from the underlying loess parent materials. Ratios of soluble-to-insoluble elements show depletions in paleosols due to chemical weathering losses of calcite, dolomite, plagioclase, mica, apatite, and smectite. In Asia and North America, the last interglacial paleosol is more weathered than equivalent modern soils, which could be due either to a climate that was warmer and more humid, a longer period of pedogenesis, or both. In Asia, early Pleistocene loess and paleosols are both more weathered than those from the middle and late Pleistocene, forming prior to a mid-Pleistocene aridification of Asia from uplift of the Tibetan Plateau. Understanding the geochemistry of loess and paleosols can tell us much about past atmospheric circulation, past temperature and moisture regimes, and even tectonic processes