646 research outputs found
Inductive learning: Does interleaving exemplars affect long-term retention?
Purpose: The present study investigated whether or not the benefi ts of interleaving of exemplars from several categories vary with retention interval in inductive learning. Methodology: Two experiments were conducted using paintings (Experiment 1) and textual materials (Experiment 2), and the experiments used a mixed factorial design. Forty students participated in each experiment for course credit. In each experiment, participants studied a series of exemplars from several categories which were presented massed and interleaved, and later their induction was tested either shortly after the study phase (short-term retention) or after a week's delay (long- term retention). Findings: Consistent with fi ndings from previous studies, the interleaving effect was found in the short-term retention condition, and crucially, the present study provided the initial evidence that interleaving of exemplars also affected long-term retention. Interestingly, massing was judged to be more effective than spacing (interleaving) in most groups, even when actual performance showed the opposite. Significance: The present study shows that interleaved exemplars have considerable potential in improving inductive learning in the long term. For example, induction is used in case-based reasoning which requires one to start with learning from specifi c cases, and then form generalizations of these cases by identifying the commonalities between them. In order to enhance long-term retention, educators may want to consider using interleaved presentation rather than massed presentation in teaching examples or cases from a particular category or concept
Are word representations abstract or instance-based? Effects of spelling inconsistency in orthographic learning
In Experiment 1, 62 10-year-old children studied printed pseudowords with semantic information. The items were later represented in a different format for reading, with half of the items spelled in the same way as before and half displayed in a new phonologically equivalent spelling. In a dictation test, the exposure to an alternative spelling substantially increased the number of errors that matched the alternative spelling, especially in good spellers. Orthographic learning predicted word identification when accuracy on orthographic choice for words was controlled. In Experiment 2, the effects on dictation responses of exposure to a misspelling versus the correct spelling, and the interactive effect of spelling ability, were confirmed relative to a no-exposure control in adults. The results support a single-lexicon view of reading and spelling and have implications for abstractionist and instance-based theories of orthographic representations
A 4-Planet System Orbiting the K0V Star HD 141399
We present precision radial velocity (RV) data sets from Keck-HIRES and from
Lick Observatory's new Automated Planet Finder Telescope and Levy Spectrometer
on Mt. Hamilton that reveal a multiple-planet system orbiting the nearby,
slightly evolved, K-type star HD 141399. Our 91 observations over 10.5 years
suggest the presence of four planets with orbital periods of 94.35, 202.08,
1070.35, and 3717.35 days and minimum masses of 0.46, 1.36, 1.22, and 0.69
Jupiter masses respectively. The orbital eccentricities of the three inner
planets are small, and the phase curves are well sampled. The inner two planets
lie just outside the 2:1 resonance, suggesting that the system may have
experienced dissipative evolution during the protoplanetary disk phase. The
fourth companion is a Jupiter-like planet with a Jupiter-like orbital period.
Its orbital eccentricity is consistent with zero, but more data will be
required for an accurate eccentricity determination.Comment: 11 pages, 13 figures, To appear in the Astrophysical Journa
A Six-Planet System Around the Star HD 34445
We present a new precision radial velocity dataset that reveals a
multi-planet system orbiting the G0V star HD 34445. Our 18-year span consists
of 333 precision radial velocity observations, 56 of which were previously
published, and 277 which are new data from Keck Observatory, Magellan at Las
Campanas Observatory, and the Automated Planet Finder at Lick Observatory.
These data indicate the presence of six planet candidates in Keplerian motion
about the host star with periods of 1057, 215, 118, 49, 677, and 5700 days, and
minimum masses of 0.63, 0.17, 0.1, 0.05, 0.12 and 0.38 Jupiter masses
respectively. The HD 34445 planetary system, with its high degree of
multiplicity, its long orbital periods, and its induced stellar radial velocity
half-amplitudes in the range is fundamentally unlike either our own solar system (in which only
Jupiter and Saturn induce significant reflex velocities for the Sun), or the
Kepler multiple-transiting systems (which tend to have much more compact
orbital configurations)Comment: 10 pages, 11 figure
Recommended from our members
Optimized modeling of Gaia-Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low mass companions
© 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab2225To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits of low mass companions to a precision comparable with previous combined analyses of direct imaging and radial velocity data. We find that our method is robust to whether we use Gaia DR2 or Gaia EDR3, as well as whether we use all of the data, or just proper motion differences. In particular, we fully characterize the orbits of HD 190360 b and HD 16160 C for the first time. With a mass of 1.80.2 and an effective temperature of 123-176 K and orbiting around a Sun-like star, HD 190360 b is the smallest Jupiter-like planet with well-constrained mass and orbit, belonging to a small sample of fully characterized Jupiter analogs. It is separated from its primary star by 0.25 and thus may be suitable for direct imaging by the CGI instrument of the Roman Space Telescope.Peer reviewe
Crew Exploration Vehicle Ascent Abort Overview
One of the primary design drivers for NASA's Crew Exploration Vehicle (CEV) is to ensure crew safety. Aborts during the critical ascent flight phase require the design and operation of CEV systems to escape from the Crew Launch Vehicle and return the crew safely to the Earth. To accomplish this requirement of continuous abort coverage, CEV ascent abort modes are being designed and analyzed to accommodate the velocity, altitude, atmospheric, and vehicle configuration changes that occur during ascent. The analysis involves an evaluation of the feasibility and survivability of each abort mode and an assessment of the abort mode coverage. These studies and design trades are being conducted so that more informed decisions can be made regarding the vehicle abort requirements, design, and operation. This paper presents an overview of the CEV, driving requirements for abort scenarios, and an overview of current ascent abort modes. Example analysis results are then discussed. Finally, future areas for abort analysis are addressed
Leveraging Space-based Data from the Nearest Solar-type Star to Better Understand Stellar Activity Signatures in Radial Velocity Data
Stellar variability is a key obstacle in reaching the sensitivity required to recover Earth-like exoplanetary signals using the radial velocity (RV) detection method. To explore activity signatures in Sun-like stars, we present SolAster, a publicly distributed analysis pipeline10 that allows for comparison of space-based measurements with ground-based disk-integrated RVs. Using high-spatial-resolution Dopplergrams, magnetograms, and continuum filtergrams from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO), we estimate "Sun-as-a-star" disk-integrated RVs due to rotationally modulated flux imbalances and convective blueshift suppression, as well as other observables such as unsigned magnetic flux. Comparing these measurements with ground-based RVs from the NEID instrument, which observes the Sun daily using an automated solar telescope, we find a strong relationship between magnetic activity indicators and RV variation, supporting efforts to examine unsigned magnetic flux as a proxy for stellar activity in slowly rotating stars. Detrending against measured unsigned magnetic flux allows us to improve the NEID RV measurements by ∼20% (∼50 cm s−1 in a quadrature sum), yielding an rms scatter of ∼60 cm s−1 over five months. We also explore correlations between individual and averaged spectral line shapes in the NEID spectra and SDO-derived magnetic activity indicators, motivating future studies of these observables. Finally, applying SolAster to archival planetary transits of Venus and Mercury, we demonstrate the ability to recover small amplitude (<50 cm s−1) RV variations in the SDO data by directly measuring the Rossiter–McLaughlin signals
Leveraging Space-based Data from the Nearest Solar-type Star to Better Understand Stellar Activity Signatures in Radial Velocity Data
Stellar variability is a key obstacle in reaching the sensitivity required to recover Earth-like exoplanetary signals using the radial velocity (RV) detection method. To explore activity signatures in Sun-like stars, we present SolAster, a publicly distributed analysis pipeline10 that allows for comparison of space-based measurements with ground-based disk-integrated RVs. Using high-spatial-resolution Dopplergrams, magnetograms, and continuum filtergrams from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO), we estimate "Sun-as-a-star" disk-integrated RVs due to rotationally modulated flux imbalances and convective blueshift suppression, as well as other observables such as unsigned magnetic flux. Comparing these measurements with ground-based RVs from the NEID instrument, which observes the Sun daily using an automated solar telescope, we find a strong relationship between magnetic activity indicators and RV variation, supporting efforts to examine unsigned magnetic flux as a proxy for stellar activity in slowly rotating stars. Detrending against measured unsigned magnetic flux allows us to improve the NEID RV measurements by ∼20% (∼50 cm s−1 in a quadrature sum), yielding an rms scatter of ∼60 cm s−1 over five months. We also explore correlations between individual and averaged spectral line shapes in the NEID spectra and SDO-derived magnetic activity indicators, motivating future studies of these observables. Finally, applying SolAster to archival planetary transits of Venus and Mercury, we demonstrate the ability to recover small amplitude (<50 cm s−1) RV variations in the SDO data by directly measuring the Rossiter–McLaughlin signals
- …