175 research outputs found
Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development
In the thymus, medullary thymic epithelial cells (mTEC) regulate T cell tolerance via negative selection and Foxp3(+) regulatory T cell (Treg) development, and alterations in the mTEC compartment can lead to tolerance breakdown and autoimmunity. Both the receptor activator for NF-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) axis and expression of the transcriptional regulator Aire are involved in the regulation of thymus medullary microenvironments. However, their impact on the mechanisms controlling mTEC homeostasis is poorly understood, as are the processes that enable the thymus medulla to support the balanced production of mTEC-dependent Foxp3(+) Treg. In this study, we have investigated the control of mTEC homeostasis and examined how this process impacts the efficacy of Foxp3(+) Treg development. Using newly generated RANK Venus reporter mice, we identify distinct RANK(+) subsets that reside within both the mTEC(hi) and mTEC(lo) compartments and that represent direct targets of OPG-mediated control. Moreover, by mapping OPG expression to a subset of Aire(+) mTEC, our data show how cis- and trans-acting mechanisms are able to control the thymus medulla by operating on multiple mTEC targets. Finally, we show that whereas the increase in mTEC availability in OPG-deficient (Tnfrsf11b(−/−)) mice impacts the intrathymic Foxp3(+) Treg pool by enhancing peripheral Treg recirculation back to the thymus, it does not alter the number of de novo Rag2pGFP(+)Foxp3(+) Treg that are generated. Collectively, our study defines patterns of RANK expression within the thymus medulla, and it shows that mTEC homeostasis is not a rate-limiting step in intrathymic Foxp3(+) Treg production
Assembling the thymus medulla:Development and function of epithelial cell heterogeneity
The thymus is a unique primary lymphoid organ that supports the production of self-tolerant T-cells essential for adaptive immunity. Intrathymic microenvironments are microanatomically compartmentalised, forming defined cortical, and medullary regions each differentially supporting critical aspects of thymus-dependent T-cell maturation. Importantly, the specific functional properties of thymic cortical and medullary compartments are defined by highly specialised thymic epithelial cells (TEC). For example, in the medulla heterogenous medullary TEC (mTEC) contribute to the enforcement of central tolerance by supporting deletion of autoreactive T-cell clones, thereby counterbalancing the potential for random T-cell receptor generation to contribute to autoimmune disease. Recent advances have further shed light on the pathways and mechanisms that control heterogeneous mTEC development and how differential mTEC functionality contributes to control self-tolerant T-cell development. Here we discuss recent findings in relation to mTEC development and highlight examples of how mTEC diversity contribute to thymus medulla function.</p
Ccl21a RECRUITS CCR7+ DC PROGENITORS TO THE THYMUS
During αβ T cell development in the thymus, migration of newly selected CD4+ and CD8+ thymocytes into medullary areas enables tolerance mechanisms to purge the newly selected αβ TCR repertoire of autoreactive specificities. Thymic dendritic cells (DC) play key roles in this process and consist of three distinct subsets that differ in their developmental origins. Thus, plasmacytoid DC and Sirpα+ conventional DC type 2 are extrathymically derived and enter into the thymus via their respective expression of the chemokine receptors CCR9 and CCR2. In contrast, although Sirpα- conventional DC type 1 (cDC1) are known to arise intrathymically from immature progenitors, the precise nature of such thymus-colonizing progenitors and the mechanisms controlling their thymus entry are unclear. In this article, we report a selective reduction in thymic cDC1 in mice lacking the chemokine receptor CCR7. In addition, we show that the thymus contains a CD11c+MHC class II-Sirpα-Flt3+ cDC progenitor population that expresses CCR7, and that migration of these cells to the thymus is impaired in Ccr7-/- mice. Moreover, thymic cDC1 defects in Ccr7-/- mice are mirrored in plt/plt mice, with further analysis of mice individually lacking the CCR7 ligands CCL21Ser (Ccl21a-/-) or CCL19 (Ccl19-/-) demonstrating an essential role for CCR7-CCL21Ser during intrathymic cDC1 development. Collectively, our data support a mechanism in which CCR7-CCL21Ser interactions guide the migration of cDC progenitors to the thymus for correct formation of the intrathymic cDC1 pool
- …