146 research outputs found

    The increase of the functional entropy of the human brain with age

    Get PDF
    We use entropy to characterize intrinsic ageing properties of the human brain. Analysis of fMRI data from a large dataset of individuals, using resting state BOLD signals, demonstrated that a functional entropy associated with brain activity increases with age. During an average lifespan, the entropy, which was calculated from a population of individuals, increased by approximately 0.1 bits, due to correlations in BOLD activity becoming more widely distributed. We attribute this to the number of excitatory neurons and the excitatory conductance decreasing with age. Incorporating these properties into a computational model leads to quantitatively similar results to the fMRI data. Our dataset involved males and females and we found significant differences between them. The entropy of males at birth was lower than that of females. However, the entropies of the two sexes increase at different rates, and intersect at approximately 50 years; after this age, males have a larger entropy

    Macrostructural Alterations of Subcortical Grey Matter in Psychogenic Erectile Dysfunction

    Get PDF
    Psychogenic erectile dysfunction (ED) has been defined as the persistent inability to attain and maintain an erection sufficient to permit sexual performance. It shows a high incidence and prevalence among men, with a significant impact on the quality of life. Few neuroimaging studies have investigated the cerebral basis of erectile dysfunctions observing the role played by prefrontal, cingulate, and parietal cortices during erotic stimulation. In spite of the well-known involvement of subcortical regions such as hypothalamus and caudate nucleus in male sexual response, and the key role of nucleus accumbens in pleasure and reward, poor attention was paid to their role in male sexual dysfunction. In this study, we determined the presence of grey matter (GM) atrophy patterns in subcortical structures such as amygdala, hippocampus, nucleus accumbens, caudate nucleus, putamen, pallidum, thalamus, and hypothalamus in patients with psychogenic ED and healthy men. After Rigiscan evaluation, urological, general medical, metabolic and hormonal, psychological and psychiatric assessment, 17 outpatients with psychogenic ED and 25 healthy controls were recruited for structural MRI session. Significant GM atrophy of nucleus accumbens was observed bilaterally in patients with respect to controls. Shape analysis showed that this atrophy was located in the left medial-anterior and posterior portion of accumbens. Left nucleus accumbens volumes in patients correlated with low erectile functioning as measured by IIEF-5 (International Index of Erectile Function). In addition, a GM atrophy of left hypothalamus was also observed. Our results suggest that atrophy of nucleus accumbens plays an important role in psychogenic erectile dysfunction. We believe that this change can influence the motivation-related component of sexual behavior. Our findings help to elucidate a neural basis of psychogenic erectile dysfunction

    Three-Dimensional Object Registration Using Wavelet Features

    Get PDF
    Recent developments in shape-based modeling and data acquisition have brought three-dimensional models to the forefront of computer graphics and visualization research. New data acquisition methods are producing large numbers of models in a variety of fields. Three-dimensional registration (alignment) is key to the useful application of such models in areas from automated surface inspection to cancer detection and surgery. The algorithms developed in this research accomplish automatic registration of three-dimensional voxelized models. We employ features in a wavelet transform domain to accomplish registration. The features are extracted in a multi-resolutional format, thus delineating features at various scales for robust and rapid matching. Registration is achieved by using a voting scheme to select peaks in sets of rotation quaternions, then separately identifying translation. The method is robust to occlusion, clutter, and noise. The efficacy of the algorithm is demonstrated through examples from solid modeling and medical imaging applications

    A novel aspect of the structure of the avian thymic medulla.

    Get PDF
    We provide evidence for the compartmentalization of the avian thymic medulla and identify the avian thymic dendritic cell. The thymic anlage develops from an epithelial cord of the branchial endoderm. Branches of the cord are separated by primary septae of neural crest origin. The dilation of the primary septae produces the keratin-negative area (KNA) of the thymic medulla and fills the gaps of the keratin-positive network (KPN). Morphometric analysis indicates that the KNA takes up about half of the volume of the thymic medulla, which has reticular connective tissue, like peripheral lymphoid organs. The KNA receives blood vessels and in addition to pericytes, the myoid cells of striated muscle structure occupy this area. The myoid cells are of branchial arch or prechordal plate origin providing indirect evidence for the neural crest origin of the KNA. The marginal epithelial cells of the KPN co-express keratin and vimentin intermediate filaments, which indicate their functional peculiarity. The basal lamina of the primary septum is discontinuous on the surface of the KPN providing histological evidence for the loss of the blood-thymus barrier in the medulla. In the center of the KNA, the dendritic cells lie in close association with blood vessels, whereas the B-cells accumulate along the KPN. The organization of the KPN and KNA increases the "surface" of the so-called cortico-medullary border, thereby contributing to the efficacy of central tolerance

    Comparative efficacy of the Cognitive Behavioral Analysis System of Psychotherapy versus Supportive Psychotherapy for early onset chronic depression: design and rationale of a multisite randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective treatment strategies for chronic depression are urgently needed since it is not only a common and particularly disabling disorder, but is also considered treatment resistant by most clinicians. There are only a few studies on chronic depression indicating that traditional psycho- and pharmacological interventions are not as effective as in acute, episodic depression. Current medications are no more effective than those introduced 50 years ago whereas the only psychotherapy developed specifically for the subgroup of chronic depression, the Cognitive Behavioral Analysis System of Psychotherapy (CBASP), faired well in one large trial. However, CBASP has never been directly compared to a non-specific control treatment.</p> <p>Methods/Design</p> <p>The present article describes the study protocol of a multisite parallel-group randomized controlled trial in Germany. The purpose of the study is to estimate the efficacy of CBASP compared to supportive psychotherapy in 268 non-medicated early-onset chronically depressed outpatients. The intervention includes 20 weeks of acute treatment with 24 individual sessions followed by 28 weeks of continuation treatment with another 8 sessions. Depressive symptoms are evaluated 20 weeks after randomisation by means of the 24-item Hamilton Rating Scale of Depression (HRSD). Secondary endpoints are depressive symptoms after 12 and 48 weeks, and remission after 12, 20, and 48 weeks. Primary outcome will be analysed using analysis of covariance (ANCOVA) controlled for pre-treatment scores and site. Analyses of continuous secondary variables will be performed using linear mixed models. For remission rates, chi-squared tests and logistic regression will be applied.</p> <p>Discussion</p> <p>The study evaluates the comparative effects of a disorder-specific psychotherapy and a well designed non-specific psychological approach in the acute and continuation treatment phase in a large sample of early-onset chronically depressed patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00970437">NCT00970437</a>).</p

    A network linking scene perception and spatial memory systems in posterior cerebral cortex

    Get PDF
    The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation

    Variance in brain volume with advancing age: implications for defining the limits of normality

    Get PDF
    Background: Statistical models of normal ageing brain tissue volumes may support earlier diagnosis of increasingly common, yet still fatal, neurodegenerative diseases. For example, the statistically defined distribution of normal ageing brain tissue volumes may be used as a reference to assess patient volumes. To date, such models were often derived from mean values which were assumed to represent the distributions and boundaries, i.e. percentile ranks, of brain tissue volume. Since it was previously unknown, the objective of the present study was to determine if this assumption was robust, i.e. whether regression models derived from mean values accurately represented the distributions and boundaries of brain tissue volume at older ages. Materials and Methods: We acquired T1-w magnetic resonance (MR) brain images of 227 normal and 219 Alzheimer’s disease (AD) subjects (aged 55-89 years) from publicly available databanks. Using nonlinear regression within both samples, we compared mean and percentile rank estimates of whole brain tissue volume by age. Results: In both the normal and AD sample, mean regression estimates of brain tissue volume often did not accurately represent percentile rank estimates (errors=-74% to 75%). In the normal sample, mean estimates generally underestimated differences in brain volume at percentile ranks below the mean. Conversely, in the AD sample, mean estimates generally underestimated differences in brain volume at percentile ranks above the mean. Differences between ages at the 5th percentile rank of normal subjects were ~39% greater than mean differences in the AD subjects. Conclusions: While more data are required to make true population inferences, our results indicate that mean regression estimates may not accurately represent the distributions of ageing brain tissue volumes. This suggests that percentile rank estimates will be required to robustly define the limits of brain tissue volume in normal ageing and neurodegenerative disease

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
    corecore