5,083 research outputs found
Hypersonic laminar boundary layers around slender bodies
Compressible laminar boundary layer equations considered for hypersonic flow around slender bodie
Piezoviscous effects in nonconformal contacts lubricated hydrodynamically
The analysis is concerned with the piezoviscous-rigid regime of lubrication for the general case of elliptical contacts. In this regime several formulas of the lubricant film thickness have been proposed by Hamrock and Dowson, by Dowson et al., and more recently by Houpert. However, either they do not include the load parameter W, which has a strong effect on film thickness, or they overestimate the film thickness by using the Barus formula for pressure-viscosity characteristics. The Roelands formula was used for the pressure-viscosity relationship. The effects of the dimensionless load, speed, and materials parameters, the radius ratio, and the lubricant entrainment direction were investigated. The dimensionless load parameter was varied over a range of one order of magnitude. The dimensionless speed parameter was varied by 5.6 times the lowest value. Conditions corresponding to the use of solid materials of steel, bronze, and silicon nitride and lubricants of paraffinic and naphthenic mineral oil were considered in obtaining the exponent in the dimensionless materials parameter. The radius ratio was varied from 0.2 to 64 (a configuration approaching a line contact). Forty-one cases were used in obtaining a minimum film thickness formula. Contour plots indicate in detail the pressure developed between the contacting solids
Static magnetic moments revealed by muon spin relaxation and thermodynamic measurements in quantum spin ice YbTiO
We present muon spin relaxation (SR) and specific-heat versus
temperature measurements on polycrystalline and single-crystal samples
of the pyrochlore magnet YbTiO. exhibits a sharp peak at a
of 0.21 and 0.26~K for the single-crystal and polycrystalline
samples respectively. For both samples, the magnetic entropy released between
50~mK and 30~K amounts to per Yb. At temperatures below
we observe a steep drop in the asymmetry of the zero-field SR time spectra
at short time scales, as well as a decoupling of the muon spins from the
internal field in longitudinal magnetic fields of ~T for both the
polycrystalline and single-crystal samples. These muon data are indicative of
static magnetic moments. Our results are consistent with the onset of
long-range magnetic order in both forms of YbTiO.Comment: 6 pages, 4 figures, accepted to PR
Aerodynamic analysis of a horizontal axis wind turbine by use of helical vortex theory, volume 2: Computer program users manual
A description of a computer program entitled VORTEX that may be used to determine the aerodynamic performance of horizontal axis wind turbines is given. The computer code implements a vortex method from finite span wind theory and determines the induced velocity at the rotor disk by integrating the Biot-Savart law. It is assumed that the trailing helical vortex filaments form a wake of constant diameter (the rigid wake assumption) and travel downstream at the free stream velocity. The program can handle rotors having any number of blades which may be arbitrarily shaped and twisted. Many numerical details associated with the program are presented. A complete listing of the program is provided and all program variables are defined. An example problem illustrating input and output characteristics is solved
Orbital-Free Density Functional Theory: Kinetic Potentials and Ab-Initio Local Pseudopotentials
In the density functional (DF) theory of Kohn and Sham, the kinetic energy of
the ground state of a system of noninteracting electrons in a general external
field is calculated using a set of orbitals. Orbital free methods attempt to
calculate this directly from the electron density by approximating the
universal but unknown kinetic energy density functional. However simple local
approximations are inaccurate and it has proved very difficult to devise
generally accurate nonlocal approximations. We focus instead on the kinetic
potential, the functional derivative of the kinetic energy DF, which appears in
the Euler equation for the electron density. We argue that the kinetic
potential is more local and more amenable to simple physically motivated
approximations in many relevant cases, and describe two pathways by which the
value of the kinetic energy can be efficiently calculated. We propose two
nonlocal orbital free kinetic potentials that reduce to known exact forms for
both slowly varying and rapidly varying perturbations and also reproduce exact
results for the linear response of the density of the homogeneous system to
small perturbations. A simple and systematic approach for generating accurate
and weak ab-initio local pseudopotentials which produce a smooth slowly varying
valence component of the electron density is proposed for use in orbital free
DF calculations of molecules and solids. The use of these local
pseudopotentials further minimizes the possible errors from the kinetic
potentials. Our theory yields results for the total energies and ionization
energies of atoms, and for the shell structure in the atomic radial density
profiles that are in very good agreement with calculations using the full
Kohn-Sham theory.Comment: To be published in Phys. Rev.
Selective interlayer ferromagnetic coupling between the Cu spins in YBa Cu O grown on top of La Ca MnO
Studies to date on ferromagnet/d-wave superconductor heterostructures focus
mainly on the effects at or near the interfaces while the response of bulk
properties to heterostructuring is overlooked. Here we use resonant soft x-ray
scattering spectroscopy to reveal a novel c-axis ferromagnetic coupling between
the in-plane Cu spins in YBa Cu O (YBCO) superconductor when it
is grown on top of ferromagnetic La Ca MnO (LCMO) manganite
layer. This coupling, present in both normal and superconducting states of
YBCO, is sensitive to the interfacial termination such that it is only observed
in bilayers with MnO_2but not with La Ca interfacial
termination. Such contrasting behaviors, we propose, are due to distinct
energetic of CuO chain and CuO plane at the La Ca and
MnO terminated interfaces respectively, therefore influencing the transfer
of spin-polarized electrons from manganite to cuprate differently. Our findings
suggest that the superconducting/ferromagnetic bilayers with proper interfacial
engineering can be good candidates for searching the theorized
Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state in cuprates and studying the
competing quantum orders in highly correlated electron systems.Comment: Please note the change of the title. Text might be slightly different
from the published versio
Surface electronic structure of a topological Kondo insulator candidate SmB6: insights from high-resolution ARPES
The Kondo insulator SmB6 has long been known to exhibit low temperature (T <
10K) transport anomaly and has recently attracted attention as a new
topological insulator candidate. By combining low-temperature and high
energy-momentum resolution of the laser-based ARPES technique, for the first
time, we probe the surface electronic structure of the anomalous conductivity
regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and
identify in-gap low-lying states within a 4 meV window of the Fermi level on
the (001)-surface of this material. The low-lying states are found to form
electron-like Fermi surface pockets that enclose the X and the Gamma points of
the surface Brillouin zone. These states disappear as temperature is raised
above 15K in correspondence with the complete disappearance of the 2D
conductivity channels in SmB6. While the topological nature of the in-gap
metallic states cannot be ascertained without spin (spin-texture) measurements
our bulk and surface measurements carried out in the
transport-anomaly-temperature regime (T < 10K) are consistent with the
first-principle predicted Fermi surface behavior of a topological Kondo
insulator phase in this material.Comment: 4 Figures, 6 Page
- …