11 research outputs found

    Polo-like kinase 1 (PLK1) inhibition suppresses cell growth and enhances radiation sensitivity in medulloblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medulloblastoma is the most common malignant brain tumor in children and remains a therapeutic challenge due to its significant therapy-related morbidity. Polo-like kinase 1 (<it>PLK1</it>) is highly expressed in many cancers and regulates critical steps in mitotic progression. Recent studies suggest that targeting PLK1 with small molecule inhibitors is a promising approach to tumor therapy.</p> <p>Methods</p> <p>We examined the expression of <it>PLK1 </it>mRNA in medulloblastoma tumor samples using microarray analysis. The impact of PLK1 on cell proliferation was evaluated by depleting expression with RNA interference (RNAi) or by inhibiting function with the small molecule inhibitor BI 2536. Colony formation studies were performed to examine the impact of BI 2536 on medulloblastoma cell radiosensitivity. In addition, the impact of depleting <it>PLK1 </it>mRNA on tumor-initiating cells was evaluated using tumor sphere assays.</p> <p>Results</p> <p>Analysis of gene expression in two independent cohorts revealed that <it>PLK1 </it>mRNA is overexpressed in some, but not all, medulloblastoma patient samples when compared to normal cerebellum. Inhibition of PLK1 by RNAi significantly decreased medulloblastoma cell proliferation and clonogenic potential and increased cell apoptosis. Similarly, a low nanomolar concentration of BI 2536, a small molecule inhibitor of PLK1, potently inhibited cell growth, strongly suppressed the colony-forming ability, and increased cellular apoptosis of medulloblastoma cells. Furthermore, BI 2536 pretreatment sensitized medulloblastoma cells to ionizing radiation. Inhibition of PLK1 impaired tumor sphere formation of medulloblastoma cells and decreased the expression of SRY (sex determining region Y)-box 2 (<it>SOX2</it>) mRNA in tumor spheres indicating a possible role in targeting tumor inititiating cells.</p> <p>Conclusions</p> <p>Our data suggest that targeting PLK1 with small molecule inhibitors, in combination with radiation therapy, is a novel strategy in the treatment of medulloblastoma that warrants further investigation.</p

    Functional immunoassay technology (FIT), a new approach for measuring physiological functions: application of FIT to measure glomerular filtration rate (GFR)

    No full text
    This is the first description of functional immunoassay technology (FIT), which as a diagnostic tool has broad application across the whole spectrum of physiological measurements. In this paper, FIT is used to measure the renal clearance of an ultra low-dose administration of a clinically available contrast reagent for the purpose of obtaining an accurate glomerular filtration rate (GFR) measurement. Biomarker-based GFR estimates offer convenience, but are not accurate and are often misleading. FIT overcomes previous analytic barriers associated with obtaining an accurate GFR measurement. We present the performance characteristics of this diagnostic test and demonstrate the method by directly comparing GFR values obtained by FIT to those obtained by an FDA approved nuclear test in 20 adults. Two subjects were healthy volunteers and the remaining 18 subjects had diagnosed chronic kidney disease, with 12 being kidney transplant recipients. Measured GFR values were calculated by the classic UV/P method and by the blood clearance method. GFR obtained by FIT and the nuclear test correlated closely over a wide range of GFR values (10.9–102.1 ml·min−1·1.73 m−2). The study demonstrates that FIT-GFR provides an accurate and reproducible measurement. This nonradioactive, immunoassay-based approach offers many advantages, chiefly that most laboratories already have the equipment and trained personnel necessary to run an ELISA, and therefore this important diagnostic measurement can more readily be obtained. The FIT-GFR test can be used throughout the pharmaceutical development pipeline: preclinical and clinical trials
    corecore