37 research outputs found

    TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.

    Get PDF
    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination

    Two Different, Highly Exposed, Bulged Structures for an Unusually Long Peptide Bound to Rat MHC Class I RT1-Aa

    Get PDF
    AbstractThe rat MHC class Ia molecule RT1-Aa has the unusual capacity to bind long peptides ending in arginine, such as MTF-E, a thirteen-residue, maternally transmitted minor histocompatibility antigen. The antigenic structure of MTF-E was unpredictable due to its extraordinary length and two arginines that could serve as potential anchor residues. The crystal structure of RT1-Aa-MTF-E at 2.55 Å shows that both peptide termini are anchored, as in other class I molecules, but the central residues in two independent pMHC complexes adopt completely different bulged conformations based on local environment. The MTF-E epitope is fully exposed within the putative T cell receptor (TCR) footprint. The flexibility demonstrated by the MTF-E structures illustrates how different TCRs may be raised against chemically identical, but structurally dissimilar, pMHC complexes

    Electron microscopy as an emerging analytical tool for characterizing vaccines

    Get PDF
    Characterization of nanoparticles and biologics is a critical step in the development of important new pharmaceutical products and biosimilars. Biologics pose unique characterization challenges that require an interdisciplinary approach in which several orthogonal methods are used to provide a complete picture. The physical characteristics of a biological product include properties such as the size, shape, morphology and aggregation state of the particles. These properties are often dependent on the specific environment of the particles and thus ideally must be assessed under conditions that reflect the final formulation of the pharmaceutical. Electron microscopy (EM) and in particular cryo-electron microscopy (cryoEM), has a unique advantage in that it provides a direct means of observing the individual particles in a sample, preserved in their natural hydrated state (cryoEM), simultaneously providing information on homogeneity, size distribution, titer, morphology, preservation state, flexibility, and aggregation state. For particles with a regular size and shape, particle averaging methods can provide 3D structural information, complementing X-ray crystallography analysis. We will demonstrate the use of EM as an analytical and structural characterization tool by presenting a number of case studies as highlights. Specifically, we will discuss the characterization of Human Papilloma Virus (HPV) VLPs in GARDASIL®, including the structure of the VLPs alone, on adjuvants, and when interacting with neutralizing antibodies [1]. We will also show how TEM was used as a non-intrusive tool to understand the structure and function of Hepatitis B surface antigen (rHBsAg) VLPs, the active component in the HBV vaccine [2]. We will furthermore demonstrate how TEM can be used to provide supporting information for characterization of a biosimilar drug delivery nanoparticle, a recombinant tuberculosis vaccine antigen, interacting with a lipid-based adjuvant [3], and a bi-specific, tetravalent immunoglobulin G-like molecule [4]. References: [1] Zhao Q, et al. 2013. Characterization of virus-like particles in GARDASIL(R) by cryo transmission electron microscopy. Hum Vaccin Immunother.10:1-6. [2] Mulder AM, et al. 2012. Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLoS One 7:e33235. [3] Fox CB, et al. 2014. Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes. Int J Nanomedicine 9:1367-77. [4] Correia I, et al. 2013.The structure of dual-variable-domain immunoglobulin molecules alone and bound to antigen. MAbs. 5:364-72

    Structure-based vaccine design by electron microscopy

    Get PDF
    Modern vaccine design relies on multiscale, interdisciplinary efforts that take advantage of innovative technologies such as in silico identification of antigens, high throughput screening of antigen immunogenicity, and gene expression profiling to predict host immune responses. In recent years, structural analysis has played an increasingly important role in vaccine development as a means to improve antigen stability, immunogenicity and large scale production. Transmission electron microscopy (TEM), and in particular cryo-TEM, is an established and powerful imaging technique applicable to many specimens, including the three-dimensional (3D) reconstruction of macromolecules and their associated complexes to high resolution. The technique is parsimonious in its material requirements and captures the specimens in their fully hydrated state, close to their native environment. The resolution of cryo-TEM reconstructions was limited to the subnanometer range until the recent development of direct electron detectors and improvements in image processing software, which has led to a so-called “resolution revolution” in the cryo-TEM field. Several protein structures have now been solved at near atomic resolution, establishing the technique as a viable alternative to X-ray analysis for high resolution structure determination. We have determined several structures with and without bound compounds at 2.9 Å – 3.6 Å resolution, which are being integrated into drug discovery and development workflows by our clients. Here we present the 2.4Å resolution structure of apoferritin determined with our Titan Krios electron microscope as an example of the cryo-TEM services available at NIS. These services are significantly enhanced with unique access by NIS to a new instrument, Spotiton, a robotic device that dispenses picoliter-volumes of sample onto a self-blotting nanowire grid as it flies past en route to vitrification. This provides several advantages over standard vitrification methods, including more automated and reproducible preparation of specimens and reducing the deleterious effects of particles interacting with the air-water interface. While high resolution 3D structure determination by cryo-TEM is at the forefront of structural biology, averages of 2D projection images at moderate resolution in negative stain or vitreous ice can also provide a wealth of information that may be difficult to obtain using other methods. This is illustrated in a number of case studies, including (1) mapping of neutralizing epitopes on the CMV pentameric glycoprotein complex; (2) mapping of neutralizing epitopes on the HIV-1 envelope glycoprotein trimer; (3) assessment of structure and conformational stability of pre- and post-fusion RSV-F protein; (4) characterization of novel adjuvants and protein delivery systems. In summary, both the moderate resolution TEM and high resolution cryo-TEM methods are well suited to extensively characterize antigen structure-function relationships, some of which may be refractory to other experimental methods

    The HFE Gene of Browsing and Grazing Rhinoceroses: A Possible Site of Adaptation to a Low-Iron Diet

    No full text
    ABSTRACT: When rhinoceros species that are browsers in the wild are fed in captivity they become iron overloaded. Presumably, their iron-absorptive mechanisms have evolved to become highly efficient. In humans, mutations of the HFE gene cause increased iron absorption. To determine whether the HFE gene of rhinoceroses has undergone mutation as an adaptive mechanism to improve iron absorption from iron-poor diets, we have sequenced the entire coding region of the HFE genes of four species of rhinoceros. Two of these were browsing species and two were grazing species. Although the HFE gene has been well preserved across species, numerous nucleotide differences were found between rhinoceros and human or mouse, some of which changed deduced amino acids. Of these mutations, only one found in the black rhinoceros appears to be a viable candidate mutation that might adversely affect HFE function. This mutation, S88T, is in a highly conserved region that is involved in the interaction between transferrin receptor and HFE

    Preliminary X-ray data analysis of crystalline hibiscus chlorotic ringspot virus

    No full text
    Hibiscus chlorotic ringspot virus is a positive-sense monopartite single-stranded RNA virus that belongs to the Carmovirus genus of the Tombusviridae family. Authentic virus harvested from infected host kenaf leaves was purified and virus crystals were grown in multiple conditions. One of the crystals diffracted to 3.2 Å resolution and allowed the collection of a partial data set

    Enhanced Local Symmetry Interactions Globally Stabilize a Mutant Virus Capsid That Maintains Infectivity and Capsid Dynamics

    No full text
    Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-Å resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure
    corecore