30 research outputs found

    Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    Get PDF
    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p\u3c0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups

    USE OF MUSCULOSKELETAL MODELING TO FIND THE BALANCE BETWEEN PERFORMANCE AND INJURY PREVENTION IN SPORTS – A PROOF OF CONCEPT

    Get PDF
    In this study we used musculoskeletal modelling with mathematical optimization tools to find whole-body kinematics that simultaneously reduce risk of injury and enhance sports performance. Combining these objectives has long been the goal of sports science research. We focused on improving hang-time parameters in volleyball (Gupta et al., 2015). We were able to preserve an advantage of hang-time (late swing) and address its disadvantage (potential loss in peak height of the hitting arm) by increasing the height of the hitting wrist by 1 cm, while at the same time not increasing the shoulder moments. This study provided a proof of concept that this optimization framework can potentially find a balance between performance and injury prevention in a complex sports task

    A cardiac rehabilitation program for breast cancer survivors: A feasibility study

    Get PDF
    Purpose: The purpose of this study was to determine the feasibility and preliminary efficacy of a cardiac rehabilitation (CR) intervention in the breast cancer population. Methods: This single-arm feasibility study evaluated a 14-week CR intervention program in breast cancer survivors. Feasibility was defined as completion of at least 30/36 sessions of the program without serious adverse events (SAE) in 80% of patients. Secondary endpoints included the change in VO2 max, cardiovascular disease (CVD) risk factors, Duke Activity Secondary Index (DASI), Brief Fatigue Inventory (BFI), and QLQ-C30. All outcomes were reported as mean change and compared using paired Results: A total of 25 patients were enrolled in the study. 18 patients of the 25 enrolled (72%) completed the 14 weeks program without SAE. The overall adherence to the study protocol was 60%. Of the 18 participants who did not withdraw from the program, 15 (83%) adhered to the study protocol and completed 30 or more sessions. There was a nonsignificant improvement in VO2 max (mean Δ0.5, Conclusion: A CR intervention in breast cancer survivors had high adherence in those who were able to complete the 14-week program. The program significantly improved patient reported physical activity, fatigue, and quality of life (QoL), without significant improvement in CVD risk factors. Implications for cancer patients are that early implementation of a CR program should be considered by practitioners as it improves QoL and exercise tolerance in breast cancer survivors

    Crouched posture maximizes ground reaction forces generated by muscles

    No full text
    Crouch gait decreases walking efficiency due to the increased knee and hip flexion during the stance phase of gait. Crouch gait is generally considered to be disadvantageous for children with cerebral palsy; however, a crouched posture may allow biomechanical advantages that lead some children to adopt a crouch gait. To investigate one possible advantage of crouch gait, a musculoskeletal model created in OpenSim was placed in 15 different postures from upright to severe crouch during initial, middle, and final stance of the gait cycle for a total of 45 different postures. A series of optimizations was performed for each posture to maximize transverse plane ground reaction forces in the eight compass directions by modifying muscle forces acting on the model. We compared the force profile areas across all postures. Larger force profile areas were allowed by postures from mild crouch (for initial stance) to crouch (for final stance). The overall ability to generate larger ground reaction force profiles represents a mechanical advantage of a crouched posture. This increase in muscle capacity while in a crouched posture may allow a patient to generate new movements to compensate for impairments associated with cerebral palsy, such as motor control deficits.</p

    Finding Emergent Gait Patterns May Reduce Progression of Knee Osteoarthritis in a Clinically Relevant Time Frame

    No full text
    A high contact force between the medial femoral condyle and the tibial plateau is the primary cause of medial compartment knee osteoarthritis (OA). A high medial contact force (MCF) during gait has been shown to be correlated to both the knee adduction moment (KAM) and knee flexion/extension moment (KFM). In this study, we used OpenSim Moco to find gait kinematics that reduced the peaks of the KAM, without increasing the peaks of the KFM, which could potentially reduce the MCF and, hence, the progression of knee OA. We used gait data from four knee OA participants. Our simulations decreased both peaks of the KAM without increasing either peak of the KFM. We found that increasing the step width was the primary mechanism, followed by simulations of all participants to reduce the frontal plane lever arm of the ground reaction force vector about the knee, in turn reducing the KAM. Importantly, each participant simulation followed different patterns of kinematic changes to achieve this reduction, which highlighted the need for participant-specific gait modifications. Moreover, we were able to simulate emerging gait patterns within 15 min, enhancing the relevance and potential for the application of developed methods in clinical settings

    Physics-based guidelines for accepting reasonable dynamic simulations of movement

    No full text
    During dynamic simulations, residuals are nonphysical generalized forces/moments that dynamically balance external and inertial forces/moments, accounting for data processing and modelling errors. Hicks et al. (2015) made the original residual threshold recommendations for an acceptable simulation, but these thresholds are not based on the dynamic, physics-based movement characteristics. In this study, we present three new, physics-based guidelines for accepting dynamic simulations of movement using zero moment point computations and thresholds for forces, center of pressure, and free moment.Published versio

    Goal-Oriented Optimization of Dynamic Simulations to Find a Balance between Performance Enhancement and Injury Prevention during Volleyball Spiking

    No full text
    Performance enhancement and injury prevention are often perceived as opposite sides of a coin, where focusing on improvements of one leads to detriment of the other. In this study, we used physics-based simulations with novel optimization methods to find participant-specific, whole-body mechanics of volleyball spiking that enhances performance (the peak height of the hitting hand and its forward velocity) while minimizing injury risk. For the volleyball spiking motion, the shoulder is the most common injury site because of the high mechanical loads that are most pronounced during the follow-through phase of the movement. We analyzed 104 and 209 spiking trials across 13 participants for the power and follow-through phases, respectively. During the power phase, simulations increased (p &lt; 0.025) the peak height of the hitting wrist by 1% and increased (p &lt; 0.025) the forward wrist velocity by 25%, without increasing peak shoulder joint torques, by increasing the lower-limb forward swing (i.e., hip flexion, knee extension). During the follow-through phase, simulations decreased (p &lt; 0.025) peak shoulder joint torques by 75% elicited by synergistic rotation of the trunk along the pathway of the hitting arm. Our results show that performance enhancement and injury prevention are not mutually exclusive and may both be improved simultaneously, potentially leading to better-performing and injury-free athletes

    Effects of increased step width on frontal plane knee biomechanics in healthy older adults during stair descent

    No full text
    Background: Peak internal knee abduction moment is a common surrogate variable associated with medial compartment knee loading. Stair descent has been shown to yield a greater peak knee abduction moment compared to level-walking. Changes in step width (SW) may lead to changes in frontal plane lower extremity limb alignment in the frontal plane and alter peak knee abduction moment. The purpose of this study was to investigate the effects of increased SW on frontal plane knee biomechanics during stair descent in healthy older adults. Methods: Twenty healthy adults were recruited for the study. A motion analysis system was used to obtain three-dimensional lower limb kinematics during testing. An instrumented 3-step staircase with two additional customized wooden steps was used to collect ground reaction forces (GRF) data during stair descent trials. Participants performed five stair descent trials at their self-selected speed using preferred, wide (26% leg length), and wider (39% leg length) SW. Results: The preferred normalized SW in older adults during stair descent was 20% of leg length. Wide and wider SW during stair descent reduced both first and second peak knee adduction angles and abduction moments compared to preferred SW in healthy adults. Conclusions: Increased SW reduced peak knee adduction angles and abduction moments. The reductions in knee abduction moments may have implications in reducing medial compartment knee loads during stair descent. © 2014 Elsevier B.V

    Associations between iliotibial band injury status and running biomechanics in women

    No full text
    Iliotibial band syndrome (ITBS) is a common overuse knee injury that is twice as likely to afflict women compared to men. Lower extremity and trunk biomechanics during running, as well as hip abductor strength and iliotibial band flexibility, are factors believed to be associated with ITBS. The purpose of this cross-sectional study was to determine if differences in lower extremity and trunk biomechanics during running exist among runners with current ITBS, previous ITBS, and controls. Additionally, we sought to determine if isometric hip abductor strength and iliotibial band flexibility were different among groups. Twenty-seven female runners participated in the study. Participants were divided into three equal groups: current ITBS, previous ITBS, and controls. Overground running trials, isometric hip abductor strength, and iliotibial band flexibility were recorded for all participants. Discrete joint and segment biomechanics, as well as hip strength and flexibility measures were analyzed using a one-way analysis of variance. Runners with current ITBS exhibited 1.8 (1.5)° greater trunk ipsilateral flexion and 7 (6)° less iliotibial band flexibility compared to runners with previous ITBS and controls. Runners with previous ITBS exhibited 2.2 (2.9) ° less hip adduction compared to runners with current ITBS and controls. Hip abductor strength 3.3 (2.6) %BM × h was less in runners with previous ITBS but not current ITBS compared to controls. Runners with current ITBS may lean their trunk more towards the stance limb which may be associated with decreased iliotibial band flexibility

    Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    Get PDF
    <div><p>Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups.</p></div
    corecore