68 research outputs found

    Free flexural vibrations of a piezoelectric bimorph plate with periodic edge conditions

    Get PDF
    This work analyzes the vibrations of a fully-electroded annular piezoelectric bimorph plate with a free inner edge and an outer edge that is built-in with a periodicity. To this end, a variational formulation with the extensive use of Lagrange multipliers for a bimorph plate with polar orthorhombic symmetry is performed first. The mechanical displacement and the electric potential that must satisfy constraint conditions at the electrodes are expanded as the sums of powers in the thickness coordinate. The resulting piezoelectric bimorph plate equations are used along with the introduction of appropriate Lagrange multipliers to analyze the polar orthorhombic annular sectorial plates with free radial and inner circumferential edges, and an entirely built-in or free outer edge. The results are then combined to obtain the solutions for the mixed boundary value problem. The extended Hamilton’s principle with the method of Lagrange multipliers is employed, followed by a Frobenius-type series expansion for solution functions. The eigensolutions are calculated from the resulting transcendental equation and compared with those obtained from an FEA to ensure the validity of the procedure

    Nonlinear Modeling and Dynamic Simulation Using Bifurcation and Stability Analyses of Regenerative Chatter of Ball-End Milling Process

    Get PDF
    A dynamic model for a ball-end milling process that includes the consideration of cutting force nonlinearities and regenerative chatter effects is presented. The nonlinear cutting force is approximated using a Fourier series and then expanded into a Taylor series up to the third order. A series of nonlinear analyses was performed to investigate the nonlinear dynamic behavior of a ball-end milling system, and the differences between the nonlinear analysis approach and its linear counterpart were examined. A bifurcation analysis of points near the critical equilibrium points was performed using the method of multiple scales (MMS) and the method of harmonic balance (MHB) to analyse the local chatter behaviors of the system. The bifurcation analysis was conducted at two subcritical Hopf bifurcation points. It was also found that a ball-end milling system with nonlinear cutting forces near its critical equilibrium points is conditionally stable. The analysis and simulation results were compared with experimental data reported in the literature, and the physical significance of the results is discussed

    Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    Get PDF
    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.open0

    Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct

    Get PDF
    Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining © The Authorsopen0

    Stimulated penetrating keratoplasty using real-time virtual intraoperative surgical optical coherence tomography

    Get PDF
    An intraoperative surgical microscope is an essential tool in a neuro-or ophthalmological surgical environment. Yet, it has an inherent limitation to classify subsurface information because it only provides the surface images. To compensate for and assist in this problem, combining the surgical microscope with optical coherence tomography (OCT) has been adapted. We developed a real-time virtual intraoperative surgical OCT (VISOCT) system by adapting a spectral-domain OCT scanner with a commercial surgical microscope. Thanks to our custommade beam splitting and image display subsystems, the OCT images and microscopic images are simultaneously visualized through an ocular lens or the eyepiece of the microscope. This improvement helps surgeons to focus on the operation without distraction to view OCT images on another separate display. Moreover, displaying the OCT live images on the eyepiece helps surgeon's depth perception during the surgeries. Finally, we successfully processed stimulated penetrating keratoplasty in live rabbits. We believe that these technical achievements are crucial to enhance the usability of the VISOCT system in a real surgical operating condition.open0

    Development of real-time dual-display handheld and bench-top hybrid-mode SD-OCTs

    Get PDF
    Development of a dual-display handheld optical coherence tomography (OCT) system for retina and optic-nerve-head diagnosis beyond the volunteer motion constraints is reported. The developed system is portable and easily movable, containing the compact portable OCT system that includes the handheld probe and computer. Eye posterior chambers were diagnosed using the handheld probe, and the probe could be fixed to the bench-top cradle depending on the volunteers' physical condition. The images obtained using this handheld probe were displayed in real time on the computer monitor and on a small secondary built-in monitor; the displayed images were saved using the handheld probe's built-in button. Large-scale signal-processing procedures such as k-domain linearization, fast Fourier transform (FFT), and log-scaling signal processing can be rapidly applied using graphics-processing-unit (GPU) accelerated processing rather than central-processing-unit (CPU) processing. The Labview-based system resolution is 1,024 ?? 512 pixels, and the frame rate is 56 frames/s, useful for real-time display. The 3D images of the posterior chambers including the retina, optic-nerve head, blood vessels, and optic nerve were composed using real-time displayed images with 500 ?? 500 ?? 500 pixel resolution. A handheld and bench-top hybrid mode with a dual-display handheld OCT was developed to overcome the drawbacks of the conventional method.open0

    In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope

    Get PDF
    We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application.open0

    Ultra-Fast Displaying Spectral Domain Optical Doppler Tomography System Using a Graphics Processing Unit

    Get PDF
    We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels x 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well.open131

    OCT for non-destructive examination of the internal biological structures of mosquito specimen

    Get PDF
    The Study of mosquitoes and their behavioral analysis are of crucial importance to control the alarmingly increasing mosquito-borne diseases. Conventional imaging techniques use either dissection, exogenous contrast agents. Non-destructive imaging techniques, like x-ray and microcomputed tomography uses ionizing radiations. Hence, a non-destructive and real-time imaging technique which can obtain high resolution images to study the anatomical features of mosquito specimen can greatly aid researchers for mosquito studies. In this study, the three-dimensional imaging capabilities of optical coherence tomography (OCT) for structural analysis of Anopheles sinensis mosquitoes has been demonstrated. The anatomical features of An. sinensis head, thorax, and abdomen regions along with internal morphological structures like foregut, midgut, and hindgut were studied using OCT imaging. Two-dimensional (2D) and three-dimensional (3D) OCT images along with histology images were helpful for the anatomical analysis of the mosquito specimens. From the concurred results and by exhibiting this as an initial study, the applicability of OCT in future entomological researches related to mosquitoes and changes in its anatomical structure is demonstrated
    corecore