19 research outputs found

    Polymer Micelle Formulation for the Proteasome Inhibitor Drug Carfilzomib: Anticancer Efficacy and Pharmacokinetic Studies in Mice

    Get PDF
    Carfilzomib (CFZ) is a peptide epoxyketone proteasome inhibitor approved for the treatment of multiple myeloma (MM). Despite the remarkable efficacy of CFZ against MM, the clinical trials in patients with solid cancers yielded rather disappointing results with minimal clinical benefits. Rapid degradation of CFZ in vivo and its poor penetration to tumor sites are considered to be major factors limiting its efficacy against solid cancers. We previously reported that polymer micelles (PMs) composed of biodegradable block copolymers poly(ethylene glycol) (PEG) and poly(caprolactone) (PCL) can improve the metabolic stability of CFZ in vitro. Here, we prepared the CFZ-loaded PM, PEG-PCL-deoxycholic acid (CFZ-PM) and assessed its in vivo anticancer efficacy and pharmacokinetic profiles. Despite in vitro metabolic protection of CFZ, CFZ-PM did not display in vivo anticancer efficacy in mice bearing human lung cancer xenograft (H460) superior to that of the clinically used cyclodextrin-based CFZ (CFZ-CD) formulation. The plasma pharmacokinetic profiles of CFZ-PM were also comparable to those of CFZ-CD and the residual tumors that persisted in xenograft mice receiving CFZ-PM displayed an incomplete proteasome inhibition. In summary, our results showed that despite its favorable in vitroperformances, the current CFZ-PM formulation did not improve in vivo anticancer efficacy and accessibility of active CFZ to solid cancer tissues over CFZ-CD. Careful consideration of the current results and potential confounding factors may provide valuable insights into the future efforts to validate the potential of CFZ-based therapy for solid cancer and to develop effective CFZ delivery strategies that can be used to treat solid cancers

    CSF total tau/α-synuclein ratio improved the diagnostic performance for Alzheimers disease as an indicator of tau phosphorylation

    Get PDF
    Abstract Background Recently, several studies suggested potential involvements of α-synuclein in Alzheimers disease (AD) pathophysiology. Higher concentrations of α-synuclein were reported in cerebrospinal fluid (CSF) of AD patients with a positive correlation towards CSF tau, indicating its possible role in AD. We analyzed the CSF biomarkers to verify whether α-synuclein could be an additional supported biomarker in AD diagnosis. Methods In this cross-sectional study, CSF samples of 71 early-onset AD, 34 late-onset AD, 11 mild cognitive impairment, 17 subjective cognitive decline, 45 Parkinsons disease, and 32 healthy control (HC) were collected. CSF amyloid-β1-42 (A), total tau (N), and phosphorylated tau181 (T) were measured by commercial ELISA kits, and in-house ELISA kit was developed to quantify α-synuclein. The cognitive assessments and amyloid-PET imaging were also performed. Results CSF α-synuclein manifested a tendency to increase in AD and to decreased in Parkinsons disease compared to HC. The equilibrium states of total tau and α-synuclein concentrations were changed significantly in AD, and the ratio of total tau/α-synuclein (N/αS) was dramatically increased in AD than HC. Remarkably, N/αS revealed a strong positive correlation with tau phosphorylation rate. Also, the combination of N/αS with amyloid-β1-42/phosphorylated tau181ratio had the best diagnosis performance (AUC = 0.956, sensitivity = 96%, specificity = 87%). In concordance analysis, N/αS showed the higher diagnostic agreement with amyloid-β1-42 and amyloid-PET. Analysis of biomarker profiling with N/αS had distinctive characteristics and clustering of each group. Especially, among the group of suspected non-Alzheimers disease pathophysiology, all A−T+N+ patients with N/αS+ were reintegrated into AD. Conclusions The high correlation of α-synuclein with tau and the elevated N/αS in AD supported the involvement of α-synuclein in AD pathophysiology. Importantly, N/αS improved the diagnostic performance, confirming the needs of incorporating α-synuclein as a biomarker for neurodegenerative disorders. The incorporation of a biomarker group [N/αS] could contribute to provide better understanding and diagnosis of neurodegenerative disorders

    IS6110-Restriction Fragment Length Polymorphism and Spoligotyping Analysis of Mycobacterium tuberculosis Clinical Isolates for Investigating Epidemiologic Distribution in Korea

    Get PDF
    The Beijing family of Mycobacterium tuberculosis has been emerging in the world. However, there are few nationwide data of genotypic distribution in Korea. This study aimed to identify the genotypic diversity of clinical isolates of M. tuberculosis and to demonstrate the population of Beijing family in Korea. We collected 96 clinical M. tuberculosis isolates from 11 university hospitals nationwide in Korea from 2008 to 2009. We observed 24 clusters in IS6110-RFLP analysis and 19 patterns in spoligotyping. Seventy-five isolates were confirmed to be Beijing family. Two isolates of the K strain and 12 isolates of the K family strain were also found. We found that drug resistance phenotypes were more strongly associated with Beijing family than non-Beijing family (P=0.003). This study gives an overview of the distribution of genotypes of M. tuberculosis in Korea. These findings indicate that we have to pay more attention to control of M. tuberculosis strains associated with the Beijing family

    Containment Domains: A Scalable, Efficient and Flexible Resilience Scheme for Exascale Systems

    No full text
    This paper describes and evaluates a scalable and efficient resilience scheme based on the concept of containment domains. Containment domains are a programming construct that enable applications to express resilience needs and to interact with the system to tune and specialize error detection, state preservation and restoration, and recovery schemes. Containment domains have weak transactional semantics and are nested to take advantage of the machine and application hierarchies and to enable hierarchical state preservation, restoration and recovery. We evaluate the scalability and efficiency of containment domains using generalized trace-driven simulation and analytical analysis and show that containment domains are superior to both checkpoint restart and redundant execution approaches

    Veratramine Inhibits the Cell Cycle Progression, Migration, and Invasion via ATM/ATR Pathway in Androgen-Independent Prostate Cancer

    No full text
    Prostate cancer (PC) is the second leading cause of cancer-related death among men. Treatment of PC becomes difficult after progression because PC that used to be androgen-dependent becomes androgen-independent prostate cancer (AIPC). Veratramine, an alkaloid extracted from the root of the Veratrum genus, has recently been reported to have anticancer effects that work against various cancers; however, its anticancer effects and the underlying mechanism of action in PC remain unknown. We investigated the anticancer effects of veratramine on AIPC using PC3 and DU145 cell lines, as well as a xenograft mouse model. The antitumor effects of veratramine were evaluated using the CCK-8, anchorage-independent colony formation, trans-well, wound healing assays, and flow cytometry in AIPC cell lines. Microarray and proteomics analyses were performed to investigate the differentially expressed genes and proteins induced by veratramine in AIPC cells. A xenograft mouse model was used to confirm the therapeutic response and in vivo efficacy of veratramine. Veratramine dose dependently reduced the proliferation of cancer cells both in vitro and in vivo. Moreover, veratramine treatment effectively suppressed the migration and invasion of PC cells. The immunoblot analysis revealed that veratramine significantly downregulated Cdk4/6 and cyclin D1 via the ATM/ATR and Akt pathways, both of which induce a DNA damage response that eventually leads to G1 phase arrest. In this study, we discovered that veratramine exerted antitumor effects on AIPC cells. We demonstrated that veratramine significantly inhibited the proliferation of cancer cells via G0/G1 phase arrest induced by the ATM/ATR and Akt pathways. These results suggest that veratramine is a promising natural therapeutic agent for AIPC. © 2023 World Scientific Publishing Company.FALS

    Jazf1 promotes prostate cancer progression by activating JNK/Slug

    No full text
    Juxtaposed with another zinc finger protein 1 (Jazf1) is a zinc finger protein and is known to affect both prostate cancer and type 2 diabetes. Jazf1 inhibits testicular nuclear receptor 4 (TR4) activation through protein-protein interaction, which results in weight loss and alleviates diabetes. However, the role of Jazf1 in prostate cancer is still poorly understood. Hence, we investigated whether the expression of Jazf1 is associated with prostate cancer progression. We confirmed the upregulation of Jazf1 expression in human prostate tissue samples. In addition, using Jazf1 overexpressing prostate cancer cell lines, DU145 and LNCaP, we found Jazf1 promoted cell proliferation and colony formation ability. We also observed that Jazf1 dramatically enhanced cell migration and invasion in transwell assays. Additionally, we checked the upregulation of vimentin and downregulation of E-cadherin expression in Jazf1- overexpressing DU145 and LNCaP cells. Moreover, we found that Slug, which is known to be regulated by JNK/c-Jun phosphorylation, was upregulated in the microarray analysis of two prostate cancer cell lines. Jazf1 promotes the phosphorylation of JNK/ c-Jun, likely promoting cell proliferation and invasion through Slug. In a xenograft model, tumors overexpressing Jazf1 were larger than control tumors, and tumors with decreased Jazf1 were smaller. These data indicated that Jazf1 enhances prostate cancer progression and metastasis via regulating JNK/Slug signaling. Taken together, these results suggest that Jazf1 plays an important role in both androgen dependent and independent prostate cancer. © Sung et al.1
    corecore