291 research outputs found
Targeted Assembly of Short Sequence Reads
As next-generation sequence (NGS) production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants, by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled strin-gently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming ge-nomic mutations, polymorphism, fusion and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly
DecGPU: distributed error correction on massively parallel graphics processing units using CUDA and MPI
<p>Abstract</p> <p>Background</p> <p>Next-generation sequencing technologies have led to the high-throughput production of sequence data (reads) at low cost. However, these reads are significantly shorter and more error-prone than conventional Sanger shotgun reads. This poses a challenge for the <it>de novo </it>assembly in terms of assembly quality and scalability for large-scale short read datasets.</p> <p>Results</p> <p>We present DecGPU, the first parallel and distributed error correction algorithm for high-throughput short reads (HTSRs) using a hybrid combination of CUDA and MPI parallel programming models. DecGPU provides CPU-based and GPU-based versions, where the CPU-based version employs coarse-grained and fine-grained parallelism using the MPI and OpenMP parallel programming models, and the GPU-based version takes advantage of the CUDA and MPI parallel programming models and employs a hybrid CPU+GPU computing model to maximize the performance by overlapping the CPU and GPU computation. The distributed feature of our algorithm makes it feasible and flexible for the error correction of large-scale HTSR datasets. Using simulated and real datasets, our algorithm demonstrates superior performance, in terms of error correction quality and execution speed, to the existing error correction algorithms. Furthermore, when combined with Velvet and ABySS, the resulting DecGPU-Velvet and DecGPU-ABySS assemblers demonstrate the potential of our algorithm to improve <it>de novo </it>assembly quality for <it>de</it>-<it>Bruijn</it>-graph-based assemblers.</p> <p>Conclusions</p> <p>DecGPU is publicly available open-source software, written in CUDA C++ and MPI. The experimental results suggest that DecGPU is an effective and feasible error correction algorithm to tackle the flood of short reads produced by next-generation sequencing technologies.</p
Evaluation of Methods for De Novo Genome Assembly from High-Throughput Sequencing Reads Reveals Dependencies That Affect the Quality of the Results
Recent developments in high-throughput sequencing technology have made low-cost sequencing an attractive approach for many genome analysis tasks. Increasing read lengths, improving quality and the production of increasingly larger numbers of usable sequences per instrument-run continue to make whole-genome assembly an appealing target application. In this paper we evaluate the feasibility of de novo genome assembly from short reads (≤100 nucleotides) through a detailed study involving genomic sequences of various lengths and origin, in conjunction with several of the currently popular assembly programs. Our extensive analysis demonstrates that, in addition to sequencing coverage, attributes such as the architecture of the target genome, the identity of the used assembly program, the average read length and the observed sequencing error rates are powerful variables that affect the best achievable assembly of the target sequence in terms of size and correctness
Assembly complexity of prokaryotic genomes using short reads
<p>Abstract</p> <p>Background</p> <p>De Bruijn graphs are a theoretical framework underlying several modern genome assembly programs, especially those that deal with very short reads. We describe an application of de Bruijn graphs to analyze the global repeat structure of prokaryotic genomes.</p> <p>Results</p> <p>We provide the first survey of the repeat structure of a large number of genomes. The analysis gives an upper-bound on the performance of genome assemblers for <it>de novo </it>reconstruction of genomes across a wide range of read lengths. Further, we demonstrate that the majority of genes in prokaryotic genomes can be reconstructed uniquely using very short reads even if the genomes themselves cannot. The non-reconstructible genes are overwhelmingly related to mobile elements (transposons, IS elements, and prophages).</p> <p>Conclusions</p> <p>Our results improve upon previous studies on the feasibility of assembly with short reads and provide a comprehensive benchmark against which to compare the performance of the short-read assemblers currently being developed.</p
Comparing De Novo Genome Assembly: The Long and Short of It
Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers – both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies – are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing “next-generation” assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium
Evaluating the Fidelity of De Novo Short Read Metagenomic Assembly Using Simulated Data
A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be overcome with a high sequencing effort
- …