1,965 research outputs found

    Angular versus radial correlation effects on momentum distributions of light two-electron ions

    Full text link
    We investigate different correlation mechanisms for two-electron systems and compare their respective effects on various electron distributions. The simplicity of the wave functions used allows for the derivation of closed-form analytical expressions for all electron distributions. Among other features, it is shown that angular and radial correlation mechanisms have opposite effects on Compton profiles at small momenta.Comment: 22 pages, 5 figures, 3 tabl

    The RIP140 Gene Is a Transcriptional Target of E2F1

    Get PDF
    RIP140 is a transcriptional coregulator involved in energy homeostasis and ovulation which is controlled at the transcriptional level by several nuclear receptors. We demonstrate here that RIP140 is a novel target gene of the E2F1 transcription factor. Bioinformatics analysis, gel shift assay, and chromatin immunoprecipitation demonstrate that the RIP140 promoter contains bona fide E2F response elements. In transiently transfected MCF-7 breast cancer cells, the RIP140 promoter is transactivated by overexpression of E2F1/DP1. Interestingly, RIP140 mRNA is finely regulated during cell cycle progression (5-fold increase at the G1/S and G2/M transitions). The positive regulation by E2F1 requires sequences located in the proximal region of the promoter (−73/+167), involves Sp1 transcription factors, and undergoes a negative feedback control by RIP140. Finally, we show that E2F1 participates in the induction of RIP140 expression during adipocyte differentiation. Altogether, this work identifies the RIP140 gene as a new transcriptional target of E2F1 which may explain some of the effect of E2F1 in both cancer and metabolic diseases

    Prediction of Biological Functions on Glycosylation Site Migrations in Human Influenza H1N1 Viruses

    Get PDF
    Protein glycosylation alteration is typically employed by various viruses for escaping immune pressures from their hosts. Our previous work had shown that not only the increase of glycosylation sites (glycosites) numbers, but also glycosite migration might be involved in the evolution of human seasonal influenza H1N1 viruses. More importantly, glycosite migration was likely a more effectively alteration way for the host adaption of human influenza H1N1 viruses. In this study, we provided more bioinformatics and statistic evidences for further predicting the significant biological functions of glycosite migration in the host adaptation of human influenza H1N1 viruses, by employing homology modeling and in silico protein glycosylation of representative HA and NA proteins as well as amino acid variability analysis at antigenic sites of HA and NA. The results showed that glycosite migrations in human influenza viruses have at least five possible functions: to more effectively mask the antigenic sites, to more effectively protect the enzymatic cleavage sites of neuraminidase (NA), to stabilize the polymeric structures, to regulate the receptor binding and catalytic activities and to balance the binding activity of hemagglutinin (HA) with the release activity of NA. The information here can provide some constructive suggestions for the function research related to protein glycosylation of influenza viruses, although these predictions still need to be supported by experimental data

    Complete Genome Sequence of Avian Paramyxovirus (APMV) Serotype 5 Completes the Analysis of Nine APMV Serotypes and Reveals the Longest APMV Genome

    Get PDF
    Avian paramyxoviruses (APMV) consist of nine known serotypes. The genomes of representatives of all APMV serotypes except APMV type 5 have recently been fully sequenced. Here, we report the complete genome sequence of the APMV-5 prototype strain budgerigar/Kunitachi/74.APMV-5 Kunitachi virus is unusual in that it lacks a virion hemagglutinin and does not grow in the allantoic cavity of embryonated chicken eggs. However, the virus grew in the amniotic cavity of embryonated chicken eggs and in twelve different established cell lines and two primary cell cultures. The genome is 17,262 nucleotides (nt) long, which is the longest among members of genus Avulavirus, and encodes six non-overlapping genes in the order of 3'N-P/V/W-M-F-HN-L-5' with intergenic regions of 4-57 nt. The genome length follows the 'rule of six' and contains a 55-nt leader sequence at the 3'end and a 552 nt trailer sequence at the 5' end. The phosphoprotein (P) gene contains a conserved RNA editing site and is predicted to encode P, V, and W proteins. The cleavage site of the F protein (G-K-R-K-K-R downward arrowF) conforms to the cleavage site motif of the ubiquitous cellular protease furin. Consistent with this, exogenous protease was not required for virus replication in vitro. However, the intracerebral pathogenicity index of APMV-5 strain Kunitachi in one-day-old chicks was found to be zero, indicating that the virus is avirulent for chickens despite the presence of a polybasic F cleavage site.Phylogenetic analysis of the sequences of the APVM-5 genome and proteins versus those of the other APMV serotypes showed that APMV-5 is more closely related to APMV-6 than to the other APMVs. Furthermore, these comparisons provided evidence of extensive genome-wide divergence that supports the classification of the APMVs into nine separate serotypes. The structure of the F cleavage site does not appear to be a reliable indicator of virulence among APMV serotypes 2-9. The availability of sequence information for all known APMV serotypes will facilitate studies in epidemiology and vaccinology

    Genetic Structure of Human A/H1N1 and A/H3N2 Influenza Virus on Corsica Island: Phylogenetic Analysis and Vaccine Strain Match, 2006–2010

    Get PDF
    Background: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA) genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. [br/] Methods: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI) were collected by General Practitioners (GPs) of the Sentinelles Network through a randomised selection routine. [br/] Results: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009). Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope) model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. [br/] Conclusion: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island

    An entire exon 3 germ-line rearrangement in the BRCA2 gene: pathogenic relevance of exon 3 deletion in breast cancer predisposition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Germ-line mutations in the <it>BRCA1 </it>and <it>BRCA2 </it>genes are major contributors to hereditary breast/ovarian cancer. Large rearrangements are less frequent in the <it>BRCA2 </it>gene than in <it>BRCA1</it>. We report, here, the first total deletion of exon 3 in the <it>BRCA2 </it>gene that was detected during screening of 2058 index cases from breast/ovarian cancer families for <it>BRCA2 </it>large rearrangements. Deletion of exon 3, which is in phase, does not alter the reading frame. Low levels of alternative transcripts lacking exon 3 (Δ3 delta3 transcript) have been reported in normal tissues, which raises the question whether deletion of exon 3 is pathogenic.</p> <p>Methods</p> <p>Large <it>BRCA2 </it>rearrangements were analysed by QMPSF (Quantitative Multiplex PCR of Short Fluorescent Fragments) or MLPA (Multiplex Ligation-Dependent Probe Amplification). The exon 3 deletion was characterized with a "zoom-in" dedicated CGH array to the <it>BRCA2 </it>gene and sequencing. To determine the effect of exon 3 deletion and assess its pathogenic effect, three methods of transcript quantification were used: fragment analysis of FAM-labelled PCR products, specific allelic expression using an intron 2 polymorphism and competitive quantitative RT-PCR.</p> <p>Results</p> <p>Large rearrangements of <it>BRCA2 </it>were detected in six index cases out of 2058 tested (3% of all deleterious <it>BRCA2 </it>mutations). This study reports the first large rearrangement of the <it>BRCA2 </it>gene that includes all of exon 3 and leads to an <it>in frame </it>deletion of exon 3 at the transcriptional level. Thirty five variants in exon 3 and junction regions of <it>BRCA2 </it>are also reported, that contribute to the interpretation of the pathogenicity of the deletion. The quantitative approaches showed that there are three classes of delta3 <it>BRCA2 </it>transcripts (low, moderate and exclusive). Exclusive expression of the delta3 transcript by the mutant allele and segregation data provide evidence for a causal effect of the exon 3 deletion.</p> <p>Conclusion</p> <p>This paper highlights that large rearrangements and total deletion of exon 3 in the <it>BRCA2 </it>gene could contribute to hereditary breast and/or ovarian cancer. In addition, our findings suggest that, to interpret the pathogenic effect of any variants of exon 3, both accurate transcript quantification and co-segregation analysis are required.</p

    LC/MS-Based Quantitative Proteomic Analysis of Paraffin-Embedded Archival Melanomas Reveals Potential Proteomic Biomarkers Associated with Metastasis

    Get PDF
    BACKGROUND: Melanoma metastasis status is highly associated with the overall survival of patients; yet, little is known about proteomic changes during melanoma tumor progression. To better understand the changes in protein expression involved in melanoma progression and metastasis, and to identify potential biomarkers, we conducted a global quantitative proteomic analysis on archival metastatic and primary melanomas. METHODOLOGY AND FINDINGS: A total of 16 metastatic and 8 primary cutaneous melanomas were assessed. Proteins were extracted from laser captured microdissected formalin fixed paraffin-embedded archival tissues by liquefying tissue cells. These preparations were analyzed by a LC/MS-based label-free protein quantification method. More than 1500 proteins were identified in the tissue lysates with a peptide ID confidence level of >75%. This approach identified 120 significant changes in protein levels. These proteins were identified from multiple peptides with high confidence identification and were expressed at significantly different levels in metastases as compared with primary melanomas (q-Value<0.05). CONCLUSIONS AND SIGNIFICANCE: The differentially expressed proteins were classified by biological process or mapped into biological system networks, and several proteins were implicated by these analyses as cancer- or metastasis-related. These proteins represent potential biomarkers for tumor progression. The study successfully identified proteins that are differentially expressed in formalin fixed paraffin-embedded specimens of metastatic and primary melanoma

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore