102 research outputs found

    Probabilistic modeling of heteroscedastic laboratory experiments using Gaussian process regression

    Get PDF
    This paper proposes an extension to Gaussian process regression (GPR) for data sets composed of only a few replicated specimens and displaying a heteroscedastic behavior. Because there are several factors that are out of the control of experimenters, it is often impossible to reproduce identical specimens for a same experiment. Moreover, observations from laboratory experiments typically display a heteroscedastic interspecimen variability. Because experiments and specimen manufacturing are expensive, it is uncommon to have more than three specimens to build a model for the observed responses. The method proposed in this paper uses GPR to predict each tested specimen using a shared prior structure and models the global heteroscedastic behavior by combining observations using conjugate prior distributions. An application of the method to high-performance fiber-reinforced concrete experiments highlights fiber addition benefits for reducing water permeability caused by macrocracks

    Electric potential across epidermis and its role during wound healing can be studied by using an in vitro reconstructed human skin

    Get PDF
    Background : After human epidermis wounding, transepithelial potential (TEP) present in nonlesional epidermis decreases and induces an endogenous direct current epithelial electric field (EEF) that could be implicated in the wound re-epithelialization. Some studies suggest that exogenous electric stimulation of wounds can stimulate healing, although the mechanisms remain to be determined. The Problem : Little is known concerning the exact action of the EEF during healing. The mechanism responsible for TEP and EEF is unknown due to the lack of an in vitro model to study this phenomenon. Basic Science Advances : We carried out studies by using a wound created in a human tissue-engineered skin and determined that TEP undergoes ascending and decreasing phases during the epithelium formation. The in vitro TEP measurements over time in the wound were corroborated with histological changes and with in vivo TEP variations during porcine skin wound healing. The expression of a crucial element implicated in Na+ transport, Na+/K+ ATPase pumps, was also evaluated at the same time points during the re-epithelialization process. The ascending and decreasing TEP values were correlated with changes in the expression of these pumps. The distribution of Na+/K+ ATPase pumps also varied according to epidermal differentiation. Further, inhibition of the pump activity induced a significant decrease of the TEP and of the re-epithelization rate. Clinical Care Relevance : A better comprehension of the role of EEF could have important future medical applications regarding the treatment of chronic wound healing. Conclusion : This study brings a new perspective to understand the formation and restoration of TEP during the cutaneous wound healing process

    Immunopeptidomic Data Integration to Artificial Neural Networks Enhances Protein-Drug Immunogenicity Prediction

    Get PDF
    Recombinant DNA technology has, in the last decades, contributed to a vast expansion of the use of protein drugs as pharmaceutical agents. However, such biological drugs can lead to the formation of anti-drug antibodies (ADAs) that may result in adverse effects, including allergic reactions and compromised therapeutic efficacy. Production of ADAs is most often associated with activation of CD4 T cell responses resulting from proteolysis of the biotherapeutic and loading of drug-specific peptides into major histocompatibility complex (MHC) class II on professional antigen-presenting cells. Recently, readouts from MHC-associated peptide proteomics (MAPPs) assays have been shown to correlate with the presence of CD4 T cell epitopes. However, the limited sensitivity of MAPPs challenges its use as an immunogenicity biomarker. In this work, MAPPs data was used to construct an artificial neural network (ANN) model for MHC class II antigen presentation. Using Infliximab and Rituximab as showcase stories, the model demonstrated an unprecedented performance for predicting MAPPs and CD4 T cell epitopes in the context of protein-drug immunogenicity, complementing results from MAPPs assays and outperforming conventional prediction models trained on binding affinity data.Fil: Barra, Carolina. Technical University of Denmark; DinamarcaFil: Ackaert, Chloe. No especifĂ­ca;Fil: Reynisson, Birkir. Technical University of Denmark; DinamarcaFil: Schockaert, Jana. No especifĂ­ca;Fil: Jessen, Leon Eyrich. Technical University of Denmark; DinamarcaFil: Watson, Mark. No especifĂ­ca;Fil: Jang, Anne. No especifĂ­ca;Fil: Comtois Marotte, Simon. No especifĂ­ca;Fil: Goulet, Jean Philippe. No especifĂ­ca;Fil: Pattijn, Sofie. No especifĂ­ca;Fil: Paramithiotis, Eustache. No especifĂ­ca;Fil: Nielsen, Morten. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas. - Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BiotecnolĂłgicas; Argentin

    Proinflammatory isoforms of IL-32 as novel and robust biomarkers for control failure in HIV-infected slow progressors.

    Get PDF
    International audienceHIV-infected slow progressors (SP) represent a heterogeneous group of subjects who spontaneously control HIV infection without treatment for several years while showing moderate signs of disease progression. Under conditions that remain poorly understood, a subgroup of these subjects experience failure of spontaneous immunological and virological control. Here we determined the frequency of SP subjects who showed loss of HIV control within our Canadian Cohort of HIV(+) Slow Progressors and identified the proinflammatory cytokine IL-32 as a robust biomarker for control failure. Plasmatic levels of the proinflammatory isoforms of IL-32 (mainly ÎČ and Îł) at earlier clinic visits positively correlated with the decline of CD4 T-cell counts, increased viral load, lower CD4/CD8 ratio and levels of inflammatory markers (sCD14 and IL-6) at later clinic visits. We present here a proof-of-concept for the use of IL-32 as a predictive biomarker for disease progression in SP subjects and identify IL-32 as a potential therapeutic target

    LILAC pilot study : effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy

    Get PDF
    Background: Chronic inflammation and residual HIV transcription persist in people living with HIV (PLWH) receiving antiretroviral therapy (ART), thus increasing the risk of developing non-AIDS co-morbidities. The mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism and HIV transcription, and therefore represents an interesting novel therapeutic target. Methods: The LILAC pilot clinical trial, performed on non-diabetic ART-treated PLWH with CD4+ /CD8+ T-cell ratios <0.8, evaluated the effects of metformin (12 weeks oral administration; 500-850 mg twice daily), an indirect mTOR inhibitor, on the dynamics of immunological/virological markers and changes in mTOR activation/phosphorylation in blood collected at Baseline, Week 12, and 12 weeks after metformin discontinuation (Week 24) and sigmoid colon biopsies (SCB) collected at Baseline and Week 12. Findings: CD4+ T-cell counts, CD4+ /CD8+ T-cell ratios, plasma markers of inflammation/gut damage, as well as levels of cell-associated integrated HIV-DNA and HIV-RNA, and transcriptionally-inducible HIV reservoirs, underwent minor variations in the blood in response to metformin. The highest levels of mTOR activation/ phosphorylation were observed in SCB at Baseline. Consistently, metformin significantly decreased CD4+ Tcell infiltration in the colon, as well as mTOR activation/phosphorylation, especially in CD4+ T-cells expressing the Th17 marker CCR6. Also, metformin decreased the HIV-RNA/HIV-DNA ratios, a surrogate marker of viral transcription, in colon-infiltrating CD4+ T-cells of 8/13 participants

    Upregulated IL-32 expression and reduced gut short chain fatty acid caproic acid in people living with HIV with subclinical atherosclerosis

    Get PDF
    Despite the success of antiretroviral therapy (ART), people living with HIV (PLWH) are still at higher risk for cardiovascular diseases (CVDs) that are mediated by chronic inflammation. Identification of novel inflammatory mediators with the inherent potential to be used as CVD biomarkers and also as therapeutic targets is critically needed for better risk stratification and disease management in PLWH. Here, we investigated the expression and potential role of the multi-isoform proinflammatory cytokine IL-32 in subclinical atherosclerosis in PLWH (n=49 with subclinical atherosclerosis and n=30 without) and HIV- controls (n=25 with subclinical atherosclerosis and n=24 without). While expression of all tested IL-32 isoforms (α, ÎČ, Îł, D, Ï”, and Ξ) was significantly higher in peripheral blood from PLWH compared to HIV- controls, IL-32D and IL-32Ξ isoforms were further upregulated in HIV+ individuals with coronary artery atherosclerosis compared to their counterparts without. Upregulation of these two isoforms was associated with increased plasma levels of IL-18 and IL-1ÎČ and downregulation of the atheroprotective protein TRAIL, which together composed a unique atherosclerotic inflammatory signature specific for PLWH compared to HIV- controls. Logistic regression analysis demonstrated that modulation of these inflammatory variables was independent of age, smoking, and statin treatment. Furthermore, our in vitro functional data linked IL-32 to macrophage activation and production of IL-18 and downregulation of TRAIL, a mechanism previously shown to be associated with impaired cholesterol metabolism and atherosclerosis. Finally, increased expression of IL-32 isoforms in PLWH with subclinical atherosclerosis was associated with altered gut microbiome (increased pathogenic bacteria; Rothia and Eggerthella species) and lower abundance of the gut metabolite short-chain fatty acid (SCFA) caproic acid, measured in fecal samples from the study participants. Importantly, caproic acid diminished the production of IL-32, IL-18, and IL-1ÎČ in human PBMCs in response to bacterial LPS stimulation. In conclusion, our studies identified an HIV-specific atherosclerotic inflammatory signature including specific IL-32 isoforms, which is regulated by the SCFA caproic acid and that may lead to new potential therapies to prevent CVD in ART-treated PLWH

    Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and crosspresentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferoninduced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activationof pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIVspecific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines

    Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors.

    Get PDF
    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines
    • 

    corecore