50 research outputs found

    The potential of soil organic carbon sequestration for climate change mitigation and food security

    Get PDF
    Soil organic carbon (SOC) sequestration on agricultural land decreases the costs of climate change mitigation while promoting increased food security. SOC has the potential to sequester up to 3.5 GtCO2eq/yr by 2050 in a scenario consistent with 1.5 ºC warming. In total, the SOC sequestration potential in 2050 could offset around 7% of total emissions in 2010 (IPCC, 2014). SOC sequestration would occur mainly through improved cropland and grassland management, but restoration of organic soils and degraded lands is also significant. SOC sequestration could reduce the negative food security impacts of a carbon tax of 190 $/tCO2eq by as much as 65%, compared to a scenario without SOC sequestration. Under a carbon price policy, farmers would generate revenue from providing SOC sequestration. Hence, farmers contributing SOC sequestration would remain competitive producers in a high carbon price context

    Europe

    Get PDF
    This chapter reviews the scientific evidence published since the IPCC Fourth Assessment Report (AR4) on observed and projected impacts of anthropogenic climate change in Europe and adaptation responses. The geographical scope of this chapter is the same as in AR4 with the inclusion of Turkey. Thus, the European region includes all countries from Iceland in the west to the Russian Federation (west of the Urals) and the Caspian Sea in the east, and from the northern shores of the Mediterranean and Black Seas and the Caucasus in the south to the Arctic Ocean in the north. Impacts above the Arctic Circle are addressed in Chapter 28 and impacts in the Baltic and Mediterranean Seas in Chapter 30. Impacts in Malta, Cyprus, and other island states in Europe are discussed in Chapter 29. The European region has been divided into five sub-regions: Atlantic, Alpine, Southern, Northern, and Continental. The sub-regions are derived by aggregating the climate zones developed by Metzger et al. (2005) and therefore represent geographical and ecological zones rather than political boundaries. The scientific evidence has been evaluated to compare impacts across (rather than within) sub-regions, although this was not always possible depending on the scientific information available

    The 4p1000 initiative : opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy

    Get PDF
    Authors would like to acknowledge the executive secretariat of the 4p1000 initiative, Charlotte Verger and Claire Weill for their valuable contributions during the preparation of this manuscript. The input of PS contributes to the UK NERC-funded Soils-R-GGREAT project (NE/P019455/1).Peer reviewedPostprin

    How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal

    Get PDF
    Global Change Biology published by John Wiley & Sons Ltd There is growing international interest in better managing soils to increase soil organic carbon (SOC) content to contribute to climate change mitigation, to enhance resilience to climate change and to underpin food security, through initiatives such as international ‘4p1000’ initiative and the FAO\u27s Global assessment of SOC sequestration potential (GSOCseq) programme. Since SOC content of soils cannot be easily measured, a key barrier to implementing programmes to increase SOC at large scale, is the need for credible and reliable measurement/monitoring, reporting and verification (MRV) platforms, both for national reporting and for emissions trading. Without such platforms, investments could be considered risky. In this paper, we review methods and challenges of measuring SOC change directly in soils, before examining some recent novel developments that show promise for quantifying SOC. We describe how repeat soil surveys are used to estimate changes in SOC over time, and how long-term experiments and space-for-time substitution sites can serve as sources of knowledge and can be used to test models, and as potential benchmark sites in global frameworks to estimate SOC change. We briefly consider models that can be used to simulate and project change in SOC and examine the MRV platforms for SOC change already in use in various countries/regions. In the final section, we bring together the various components described in this review, to describe a new vision for a global framework for MRV of SOC change, to support national and international initiatives seeking to effect change in the way we manage our soils

    Quantifying nitrogen fluxes and their influence on the greenhouse gas balance: recent findings of the NitroEurope Integrated Project

    Get PDF
    The generation of reactive nitrogen (Nr) by human activities to stimulate agricultural productivity and the unintended formation of Nr in combustion processes both have major impacts on the global environment. Effects of excess Nr include the deterioration of air quality, water quality, soil quality and a decline in biodiversity. One of the most controversial impacts of nitrogen, however, is on the greenhouse gas balance. While recent papers have highlighted a possible benefit of nitrogen in enhancing rates of carbon sequestration, there remain many trade-offs between nitrogen and greenhouse gas exchange. The result is that the net effect of Nr on the global radiative balance has yet to be fully quantified. To better understand these relationships requires intense measurement and modelling of Nr fluxes at various temporal and spatial scales in order to make the link between different nitrogen forms and their fate in the environment. It is essential to measure fluxes for a wide range of ecosystems considering the biosphere-atmosphere exchange of the Nr components and greenhouse gases, as well as the fixation of di-nitrogen and its creation by denitrification. Long-term observations are needed for representative ecosystems, together with results from experiments addressing the responses of the key nitrogen and greenhouse gas fluxes to different global change drivers. The NitroEurope Integrated Project (in short NEU IP), funded under the 6th Framework Programme of the European Commission, has developed and applied a strategy for quantifying these different terms on multiple scales. With the project nearing completion, this presentation reports selected preliminary findings. It highlights the first estimates of Nr inputs and net green-house gas exchange for a series of 13 flux ‘supersites’, complemented by the emerging results of Nr concentrations and related N inputs at a network of 58 ‘inferential sites’, which extend the European representativity of the results. In addition, new low cost methods to measure nitrogen fluxes will be reported, which have been extensively tested at those sites. Results from this 3-tier flux network are underpinned by emerging findings from an extensive network of manipulation sites. A combination of modelling at plot, landscape and European scales is used to upscale the results. Finally the talk will illustrate how nitrogen mitigation techniques are being considered at the European scale, including an estimation of the scale of costs involved in simultaneously mitigating nitrous oxide, ammonia and nitrate losse

    Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils

    Get PDF
    ACKNOWLEDGEMENTS This study was supported by the project “C and N models inter-comparison and improvement to assess management options for GHG mitigation in agro-systems worldwide” (CN-MIP, 2014- 2017), which received funding by a multi-partner call on agricultural greenhouse gas research of the Joint Programming Initiative ‘FACCE’ through national financing bodies. S. Recous, R. Farina, L. Brilli, G. Bellocchi and L. Bechini received mobility funding by way of the French Italian GALILEO programme (CLIMSOC project). The authors acknowledge particularly the data holders for the Long Term Bare-Fallows, who made their data available and provided additional information on the sites: V. Romanenkov, B.T. Christensen, T. Kätterer, S. Houot, F. van Oort, A. Mc Donald, as well as P. Barré. The input of B. Guenet and C. Chenu contributes to the ANR “Investissements d’avenir” programme with the reference CLAND ANR-16-CONV-0003. The input of P. Smith and C. Chenu contributes to the CIRCASA project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774378 and the projects: DEVIL (NE/M021327/1) and Soils‐R‐GRREAT (NE/P019455/1). The input of B. Grant and W. Smith was funded by Science and Technology Branch, Agriculture and Agri-Food Canada, under the scope of project J-001793. The input of A. Taghizadeh-Toosi was funded by Ministry of Environment and Food of Denmark as part of the SINKS2 project. The input of M. Abdalla contributes to the SUPER-G project, which received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no 774124.Peer reviewedPostprin

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Fixation symbiotique de l'azote et assimilation du nitrate chez la luzerne (Medicago sativa L.) : aspects methodologiques, aspects physiologiques

    No full text
    CNRS T 59371 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc
    corecore