22 research outputs found

    Is there a morning-to-evening difference in the acute IL-6 and cortisol responses to resistance exercise?

    Get PDF
    Exercise training is known to induce a molecular adaptation process involving inflammatory responses. However any time-of-day effect of exercise on inflammatory responses remains unknown. The aim of the present study was to investigate whether acute bouts of intense exercise performed at different times of the day would affect the release Interleukin-6 (IL-6), one of the most abundant cytokines in mammalian endocrine response to exercise. Cortisol levels were measured as a confirmation of correct timing of exercise and to determine any impact it may have on the cytokine release. Twelve healthy male participants carried out 30 min of intense exercise (3 sets of 8-12 repetitions for 4 resistance exercises at 70% of 1RM) in morning (08:15-09:00 h), and evening (18:15-19:00 h) sessions. An 8h fasting period was required before each exercise session. Blood samples were taken immediately pre and post each exercise sessions to determine IL-6 and cortisol levels. Our data show that whilst the training group showed no post-exercise changes in serum_IL-6 levels (P>0.05), the control group on the other hand showed significant time-of-day modifications in serum_IL-6 levels (P=0.008). Moreover, a significant interaction between intervention phase (pre-post training, AM vs. PM) and group (Exercise vs. Control) is evidenced in terms of serum_IL-6 levels (P=0.014). This interaction however was nullified when the between group differences at baseline were partialled out in a covariate analysis (P>0.05). We also found that the main effect of experimental phase on Cortisol was present in both the trained (P=0.004) and control groups (p0.05). Based on the current data, we would propose that exercise and/or time-of-day would not interfere with clinical endocrine profiling of IL-6 in a population

    Genotype–phenotype correlation in PRKN-associated Parkinson’s disease

    Get PDF
    Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson’s disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials

    The differential hormonal milieu of morning versus evening, may have an impact on muscle hypertrophic potential

    Get PDF
    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely

    Influence of exercise intensity on training-induced tendon mechanical properties changes in older individuals

    Get PDF
    This study compared the effects of low vs. high intensity training on tendon properties in an elderly population. Participants were pair-matched (gender, habitual physical activity, anthropometrics, and baseline knee extension strength) and then randomly assigned to low (LowR, i.e., ∼40 % 1RM) or high (High R, i.e., ∼80 % 1RM) intensity resistance training programmes for 12 weeks, 3x per week (LowR, n = 9, age 74 ± 5 years; HighR, n = 8, age 68 ± 6 years). Patellar tendon properties (stiffness [K], Young's modulus [YM], cross-sectional area [T CSA], and tendon length [T L]) were measured pre and post training using a combination of magnetic resonance imaging (MRI), B-mode ultrasonography, dynamometry, electromyography and ramped isometric knee extensions. With training K showed no significant change in the LowR group while it incremented by 57.7 % in the HighR group (p < 0.05). The 51.1 % group difference was significant (p < 0.05). These differences were still apparent when the data was normalized for T CSA and T L, i.e., significant increase in YM post-intervention in HighR (p < 0.05), but no change in LowR. These findings suggest that when prescribing exercise for a mixed genders elderly population, exercise intensities of ≤40 % 1RM may not be sufficient to affect tendon properties. © 2014 American Aging Association

    Genotype-phenotype correlation in PRKN-associated Parkinson's disease

    Get PDF
    Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p &lt; 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials

    Genotype–phenotype correlation in PRKN- associated Parkinson’s disease

    Get PDF
    Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson’s disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials

    Mice cell-line (C2C12) treated with AM and PM pre and post exercise serum.

    No full text
    <p>a) Myogenic index, b) Myotube width.* denotes pre-exercise significance, # denotes post exercise significance, ^ denotes significance to control, † denotes significance to pre and post exercise. Mean ± SEM.</p
    corecore