82 research outputs found
Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms
We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms
Parallel Navier-Stokes computations on shared and distributed memory architectures
We study a high order finite difference scheme to solve the time accurate flow field of a jet using the compressible Navier-Stokes equations. As part of our ongoing efforts, we have implemented our numerical model on three parallel computing platforms to study the computational, communication, and scalability characteristics. The platforms chosen for this study are a cluster of workstations connected through fast networks (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and a distributed memory multiprocessor (the IBM SPI). Our focus in this study is on the LACE testbed. We present some results for the Cray YMP and the IBM SP1 mainly for comparison purposes. On the LACE testbed, we study: (1) the communication characteristics of Ethernet, FDDI, and the ALLNODE networks and (2) the overheads induced by the PVM message passing library used for parallelizing the application. We demonstrate that clustering of workstations is effective and has the potential to be computationally competitive with supercomputers at a fraction of the cost
The six minute walk test accurately estimates mean peak oxygen uptake
<p>Abstract</p> <p>Background</p> <p>Both Peak Oxygen Uptake (peak VO2), from cardiopulmonary exercise testing (CPET) and the distance walked during a Six-Minute Walk Test (6 MWD) are used for following the natural history of various diseases, timing of procedures such as transplantation and for assessing the response to therapeutic interventions. However, their relationship has not been clearly defined.</p> <p>Methods</p> <p>We determined the ability of 6 MWD to predict peak VO2 using data points from 1,083 patients with diverse cardiopulmonary disorders. The patient data came from a study we performed and 10 separate studies where we were able to electronically convert published scattergrams to bivariate points. Using Linear Mixed Model analysis (LMM), we determined what effect factors such as disease entity and different inter-site testing protocols contributed to the magnitude of the standard error of estimate (SEE).</p> <p>Results</p> <p>The LMM analysis found that only 0.16 ml/kg/min or about 4% of the SEE was due to all of the inter-site testing differences. The major source of error is the inherent variability related to the two tests. Therefore, we were able to create a generalized equation that can be used to predict peak VO2 among patients with different diseases, who have undergone various exercise protocols, with minimal loss of accuracy. Although 6 MWD and peak VO2 are significantly correlated, the SEE is unacceptably large for clinical usefulness in an individual patient. For the data as a whole it is 3.82 ml/kg/min or 26.7% of mean peak VO2. Conversely, the SEE for predicting the mean peak VO2 from mean 6 MWD for the 11 study groups is only 1.1 ml/kg/min.</p> <p>Conclusions</p> <p>A generalized equation can be used to predict peak VO2 from 6 MWD. Unfortunately, like other prediction equations, it is of limited usefulness for individual patients. However, the generalized equation can be used to accurately estimate mean peak VO2 from mean 6 MWD, among groups of patients with diverse diseases without the need for cardiopulmonary exercise testing. The equation is:</p> <p><display-formula><graphic file="1471-2466-10-31-i1.gif"/></display-formula></p
Quantum Control of Spin Qubits Using Nanomagnets
Single-qubit gates are essential components of a universal quantum computer.
Without selective addressing of individual qubits, scalable implementation of
quantum algorithms is not possible. When the qubits are discrete points or
regions on a lattice, the selective addressing of magnetic spin qubits at the
nanoscale remains a challenge due to the difficulty of localizing and confining
a classical divergence-free field to a small volume of space. Herein we propose
a new technique for addressing spin qubits using voltage-control of nanoscale
magnetism, exemplified by the use of voltage control of magnetic anisotropy
(VCMA). We show that by tuning the frequency of the nanomagnet's electric field
drive to the Larmor frequency of the spins confined to a nanoscale volume, and
by modulating the phase of the drive, single-qubit quantum gates with
fidelities approaching those for fault-tolerant quantum computing can be
implemented. Such single-qubit gate operations have the advantage of remarkable
energy efficiency, requiring only tens of femto-Joules per gate operation, and
lossless, purely magnetic field control (no E-field over the target volume).
Their physical realization is also straightforward using existing foundry
manufacturing techniques.Comment: 10 pages, 6 figure
- …