1,647 research outputs found

    Unimpeded permeation of water through helium-leak-tight graphene-based membranes

    Full text link
    Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicron-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors and gases, including helium, but allow unimpeded permeation of water (H2O permeates through the membranes at least 10^10 times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water

    The ⊛-composition of fuzzy implications: Closures with respect to properties, powers and families

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications from a given pair of fuzzy implications. Viewing this as a binary operation ⊛ on the set II of fuzzy implications they obtained, for the first time, a monoid structure (I,⊛)(I,⊛) on the set II. Some algebraic aspects of (I,⊛)(I,⊛) had already been explored and hitherto unknown representation results for the Yager's families of fuzzy implications were obtained in [53] (N.R. Vemuri and B. Jayaram, Representations through a monoid on the set of fuzzy implications, fuzzy sets and systems, 247 (2014) 51–67). However, the properties of fuzzy implications generated or obtained using the ⊛-composition have not been explored. In this work, the preservation of the basic properties like neutrality, ordering and exchange principles , the functional equations that the obtained fuzzy implications satisfy, the powers w.r.t. ⊛ and their convergence, and the closures of some families of fuzzy implications w.r.t. the operation ⊛, specifically the families of (S,N)(S,N)-, R-, f- and g-implications, are studied. This study shows that the ⊛-composition carries over many of the desirable properties of the original fuzzy implications to the generated fuzzy implications and further, due to the associativity of the ⊛-composition one can obtain, often, infinitely many new fuzzy implications from a single fuzzy implication through self-composition w.r.t. the ⊛-composition

    Conjugacy Relations via Group Action on the set of Fuzzy Implications

    Get PDF
    Let denote the set of all increasing bijections on [0 ; 1] and I the set of fuzzy implications. In [1], the authors proposed a new way of generating fuzzy implications from fuzzy....

    Lattice operations on fuzzy implications and the preservation of the exchange principle

    Get PDF
    In this work, we solve an open problem related to the preservation of the exchange principle (EP) of fuzzy implications under lattice operations ([3], Problem 3.1.). We show that generalizations of the commutativity of antecedents (CA) to a pair of fuzzy implications (I,J)(I,J), viz., the generalized exchange principle and the mutual exchangeability are sufficient conditions for the solution of the problem. Further, we determine conditions under which these become necessary too. Finally, we investigate the pairs of fuzzy implications from different families such that (EP) is preserved by the join and meet operations

    Homomorphisms on the monoid of fuzzy implications and the iterative functional equation I(x,I(x,y))=I(x,y)

    Get PDF
    Recently, Vemuri and Jayaram proposed a novel method of generating fuzzy implications, called the ⊛⊛-composition, from a given pair of fuzzy implications [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51-67]. However, as with any generation process, the ⊛⊛-composition does not always generate new fuzzy implications. In this work, we study the generative power of the ⊛⊛-composition. Towards this end, we study some specific functional equations all of which lead to the solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y) involving fuzzy implications which has been studied extensively for different families of fuzzy implications in this very journal, see [Information Sciences 177, 2954–2970 (2007); 180, 2487–2497 (2010); 186, 209–221 (2012)]. In this work, unlike in other existing works, we do not restrict the solutions to a particular family of fuzzy implications. Thus we take an algebraic approach towards solving these functional equations. Viewing the ⊛⊛-composition as a binary operation ⊛⊛ on the set II of all fuzzy implications one obtains a monoid structure (I,⊛)(I,⊛) on the set II. From the Cayley’s theorem for monoids, we know that any monoid is isomorphic to the set of all right translations. We determine the complete set KK of fuzzy implications w.r.t. which the right translations also become semigroup homomorphisms on the monoid (I,⊛I,⊛) and show that KK not only answers our questions regarding the generative power of the ⊛⊛-composition but also contains many as yet unknown solutions of the iterative functional equation I(x,I(x,y))=I(x,y)I(x,I(x,y))=I(x,y)

    Representations through a monoid on the set of fuzzy implications

    Get PDF
    Fuzzy implications are one of the most important fuzzy logic connectives. In this work, we conduct a systematic algebraic study on the set II of all fuzzy implications. To this end, we propose a binary operation, denoted by ⊛, which makes (I,⊛I,⊛) a non-idempotent monoid. While this operation does not give a group structure, we determine the largest subgroup SS of this monoid and using its representation define a group action of SS that partitions II into equivalence classes. Based on these equivalence classes, we obtain a hitherto unknown representations of the two main families of fuzzy implications, viz., the f- and g-implications

    Bijective transformations of fuzzy implications – An algebraic perspective

    Get PDF
    Bijective transformations play an important role in generating fuzzy implications from fuzzy implications. In [Representations through a Monoid on the set of Fuzzy Implications, Fuzzy Sets and Systems, 247, 51–67], Vemuri and Jayaram proposed a monoid structure on the set of fuzzy implications, which is denoted by II, and using the largest subgroup SS of this monoid discussed some group actions on the set II. In this context, they obtained a bijective transformation which ultimately led to hitherto unknown representations of the Yager's families of fuzzy implications, viz., f-, g -implications. This motivates us to consider whether the bijective transformations proposed by Baczyński & Drewniak and Jayaram & Mesiar, in different but purely analytic contexts, also possess any algebraic connotations. In this work, we show that these two bijective transformations can also be seen as being obtained from some group actions of SS on II. Further, we consider the most general bijective transformation that generates fuzzy implications from fuzzy implications and show that it can also be obtained as a composition of group actions of SS on II. Thus this work tries to position such bijective transformations from an algebraic perspective

    The Making of Cloud Applications An Empirical Study on Software Development for the Cloud

    Full text link
    Cloud computing is gaining more and more traction as a deployment and provisioning model for software. While a large body of research already covers how to optimally operate a cloud system, we still lack insights into how professional software engineers actually use clouds, and how the cloud impacts development practices. This paper reports on the first systematic study on how software developers build applications in the cloud. We conducted a mixed-method study, consisting of qualitative interviews of 25 professional developers and a quantitative survey with 294 responses. Our results show that adopting the cloud has a profound impact throughout the software development process, as well as on how developers utilize tools and data in their daily work. Among other things, we found that (1) developers need better means to anticipate runtime problems and rigorously define metrics for improved fault localization and (2) the cloud offers an abundance of operational data, however, developers still often rely on their experience and intuition rather than utilizing metrics. From our findings, we extracted a set of guidelines for cloud development and identified challenges for researchers and tool vendors
    corecore