825 research outputs found

    The cost of inadequate sleep among on-call workers in Australia: A workplace perspective

    Get PDF
    Ā© 2018 by the authors. Licensee MDPI, Basel, Switzerland. On-call or stand-by is becoming an increasingly prevalent form of work scheduling. However, on-call arrangements are typically utilised when workloads are low, for example at night, which can result in inadequate sleep. It is a matter of concern that on-call work is associated with an increased risk of workplace injury. This study sought to determine the economic cost of injury due to inadequate sleep in Australian on-call workers. The prevalence of inadequate sleep among on-call workers was determined using an online survey, and economic costs were estimated using a previously validated costing methodology. Two-thirds of the sample (66%) reported obtaining inadequate sleep on weekdays (work days) and over 80% reported inadequate sleep while on-call. The resulting cost of injury is estimated at 2.25billionperyear(2.25 billion per year (1.71ā€“2.73 billion). This equates to 1222perpersonperincidentinvolvingashortāˆ’termabsencefromwork;1222 per person per incident involving a short-term absence from work; 2.53 million per incident classified as full incapacity, and $1.78 million for each fatality. To the best of our knowledge this is the first study to quantify the economic cost of workplace injury due to inadequate sleep in on-call workers. Well-rested employees are critical to safe and productive workplace operations. Therefore, it is in the interest of both employers and governments to prioritise and invest far more into the management of inadequate sleep in industries which utilise on-call work arrangements

    Knowledge Graph Embedding: An Overview

    Full text link
    Many mathematical models have been leveraged to design embeddings for representing Knowledge Graph (KG) entities and relations for link prediction and many downstream tasks. These mathematically-inspired models are not only highly scalable for inference in large KGs, but also have many explainable advantages in modeling different relation patterns that can be validated through both formal proofs and empirical results. In this paper, we make a comprehensive overview of the current state of research in KG completion. In particular, we focus on two main branches of KG embedding (KGE) design: 1) distance-based methods and 2) semantic matching-based methods. We discover the connections between recently proposed models and present an underlying trend that might help researchers invent novel and more effective models. Next, we delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D affine operations, respectively. They encompass a broad spectrum of techniques including distance-based and semantic-based methods. We will also discuss an emerging approach for KG completion which leverages pre-trained language models (PLMs) and textual descriptions of entities and relations and offer insights into the integration of KGE embedding methods with PLMs for KG completion

    CompoundE: Knowledge Graph Embedding with Translation, Rotation and Scaling Compound Operations

    Full text link
    Translation, rotation, and scaling are three commonly used geometric manipulation operations in image processing. Besides, some of them are successfully used in developing effective knowledge graph embedding (KGE) models such as TransE and RotatE. Inspired by the synergy, we propose a new KGE model by leveraging all three operations in this work. Since translation, rotation, and scaling operations are cascaded to form a compound one, the new model is named CompoundE. By casting CompoundE in the framework of group theory, we show that quite a few scoring-function-based KGE models are special cases of CompoundE. CompoundE extends the simple distance-based relation to relation-dependent compound operations on head and/or tail entities. To demonstrate the effectiveness of CompoundE, we conduct experiments on three popular KG completion datasets. Experimental results show that CompoundE consistently achieves the state of-the-art performance.Comment: 16 page

    Geometric Generalisations of SHAKE and RATTLE

    Full text link
    A geometric analysis of the Shake and Rattle methods for constrained Hamiltonian problems is carried out. The study reveals the underlying differential geometric foundation of the two methods, and the exact relation between them. In addition, the geometric insight naturally generalises Shake and Rattle to allow for a strictly larger class of constrained Hamiltonian systems than in the classical setting. In order for Shake and Rattle to be well defined, two basic assumptions are needed. First, a nondegeneracy assumption, which is a condition on the Hamiltonian, i.e., on the dynamics of the system. Second, a coisotropy assumption, which is a condition on the geometry of the constrained phase space. Non-trivial examples of systems fulfilling, and failing to fulfill, these assumptions are given

    Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

    Get PDF
    This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov. The general idea for these variational integrators is to directly discretize Hamiltonā€™s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noetherā€™s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators

    Mix-of-Show: Decentralized Low-Rank Adaptation for Multi-Concept Customization of Diffusion Models

    Full text link
    Public large-scale text-to-image diffusion models, such as Stable Diffusion, have gained significant attention from the community. These models can be easily customized for new concepts using low-rank adaptations (LoRAs). However, the utilization of multiple concept LoRAs to jointly support multiple customized concepts presents a challenge. We refer to this scenario as decentralized multi-concept customization, which involves single-client concept tuning and center-node concept fusion. In this paper, we propose a new framework called Mix-of-Show that addresses the challenges of decentralized multi-concept customization, including concept conflicts resulting from existing single-client LoRA tuning and identity loss during model fusion. Mix-of-Show adopts an embedding-decomposed LoRA (ED-LoRA) for single-client tuning and gradient fusion for the center node to preserve the in-domain essence of single concepts and support theoretically limitless concept fusion. Additionally, we introduce regionally controllable sampling, which extends spatially controllable sampling (e.g., ControlNet and T2I-Adaptor) to address attribute binding and missing object problems in multi-concept sampling. Extensive experiments demonstrate that Mix-of-Show is capable of composing multiple customized concepts with high fidelity, including characters, objects, and scenes

    The Revised TESS Input Catalog and Candidate Target List

    Get PDF
    We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2-minute cadence observations, and assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes (MAST) server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.Comment: 30 pages, 16 figures, submitted to AAS Journals; provided to the community in advance of publication in conjunction with public release of the TIC/CTL on 28 May 201
    • ā€¦
    corecore