13 research outputs found
ZSCAN10 deficiency causes a neurodevelopmental disorder with characteristic oto-facial malformations
Neurodevelopmental disorders are major indications for genetic referral and have been linked to more than 1500 loci including genes encoding transcriptional regulators. The dysfunction of transcription factors often results in characteristic syndromic presentations; however, at least half of these patients lack a genetic diagnosis. The implementation of machine learning approaches has the potential to aid in the identification of new disease genes and delineate associated phenotypes.
Next generation sequencing was performed in seven affected individuals with neurodevelopmental delay and dysmorphic features. Clinical characterization included reanalysis of available neuroimaging datasets and 2D portrait image analysis with GestaltMatcher. The functional consequences of ZSCAN10 loss were modelled in mouse embryonic stem cells (mESCs), including a knockout and a representative ZSCAN10 protein truncating variant. These models were characterized by gene expression and western blot analyses, chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) and immunofluorescence staining. Zscan10 knockout mouse embryos were generated and phenotyped.
We prioritized bi-allelic ZSCAN10 loss-of-function variants in seven affected individuals from five unrelated families as the underlying molecular cause. RNA-sequencing analyses in Zscan10−/− mESCs indicated dysregulation of genes related to stem cell pluripotency. In addition, we established in mESCs the loss-of-function mechanism for a representative human ZSCAN10 protein truncating variant by showing alteration of its expression levels and subcellular localization, interfering with its binding to DNA enhancer targets. Deep phenotyping revealed global developmental delay, facial asymmetry and malformations of the outer ear as consistent clinical features. Cerebral MRI showed dysplasia of the semicircular canals as an anatomical correlate of sensorineural hearing loss. Facial asymmetry was confirmed as a clinical feature by GestaltMatcher and was recapitulated in the Zscan10 mouse model along with inner and outer ear malformations.
Our findings provide evidence of a novel syndromic neurodevelopmental disorder caused by bi-allelic loss-of-function variants in ZSCAN10
Biallelic BORCS8 variants cause an infantile-onset neurodegenerative disorder with altered lysosome dynamics
BLOC-One-Related Complex (BORC) is a multiprotein complex composed of eight subunits named BORCS1-8. BORC associates with the cytosolic face of lysosomes, where it sequentially recruits the small GTPase ARL8 and kinesin-1 and -3 microtubule motors to promote anterograde transport of lysosomes toward the peripheral cytoplasm in non-neuronal cells and the distal axon in neurons. The physiological and pathological importance of BORC in humans, however, remains to be determined. Here, we report the identification of compound heterozygous variants [missense c.85T > C (p.Ser29Pro) and frameshift c.71-75dupTGGCC (p.Asn26Trpfs*51)] and homozygous variants [missense c.196A > C (p.Thr66Pro) and c.124T > C (p.Ser42Pro)] in BORCS8 in five children with a severe early-infantile neurodegenerative disorder from three unrelated families. The children exhibit global developmental delay, severe-to-profound intellectual disability, hypotonia, limb spasticity, muscle wasting, dysmorphic facies, optic atrophy, leuko-axonopathy with hypomyelination, and neurodegenerative features with prevalent supratentorial involvement. Cellular studies using a heterologous transfection system show that the BORCS8 missense variants p.Ser29Pro, p.Ser42Pro and p.Thr66Pro are expressed at normal levels but exhibit reduced assembly with other BORC subunits and reduced ability to drive lysosome distribution toward the cell periphery. The BORCS8 frameshift variant p.Asn26Trpfs*51, on the other hand, is expressed at lower levels and is completely incapable of assembling with other BORC subunits and promoting lysosome distribution toward the cell periphery. Therefore, all the BORCS8 variants are partial or total loss-of-function alleles and are thus likely pathogenic. Knockout of the orthologous borcs8 in zebrafish causes decreased brain and eye size, neuromuscular anomalies and impaired locomotion, recapitulating some of the key traits of the human disease. These findings thus identify BORCS8 as a novel genetic locus for an early-infantile neurodegenerative disorder and highlight the critical importance of BORC and lysosome dynamics for the development and function of the central nervous system.</br
Genotype-Phenotype Correlations in Charcot-Marie-Tooth Disease Due to MTMR2 Mutations and Implications in Membrane Trafficking
Charcot-Marie-Tooth type 4 (CMT4) is an autosomal recessive severe form of neuropathy with genetic heterogeneity. CMT4B1 is caused by mutations in the myotubularin-related 2 (MTMR2) gene and as a member of the myotubularin family, the MTMR2 protein is crucial for the modulation of membrane trafficking. To enable future clinical trials, we performed a detailed review of the published cases with MTMR2 mutations and describe four novel cases identified through whole-exome sequencing (WES). The four unrelated families harbor novel homozygous mutations in MTMR2 (NM_016156, Family 1: c.1490dupC; p.Phe498IlefsTer2; Family 2: c.1479+1G>A; Family 3: c.1090C>T; p.Arg364Ter; Family 4: c.883C>T; p.Arg295Ter) and present with CMT4B1-related severe early-onset motor and sensory neuropathy, generalized muscle atrophy, facial and bulbar weakness, and pes cavus deformity. The clinical description of the new mutations reported here overlap with previously reported CMT4B1 phenotypes caused by mutations in the phosphatase domain of MTMR2, suggesting that nonsense MTMR2 mutations, which are predicted to result in loss or disruption of the phosphatase domain, are associated with a severe phenotype and loss of independent ambulation by the early twenties. Whereas the few reported missense mutations and also those truncating mutations occurring at the C-terminus after the phosphatase domain cause a rather mild phenotype and patients were still ambulatory above the age 30 years. Charcot-Marie-Tooth neuropathy and Centronuclear Myopathy causing mutations have been shown to occur in proteins involved in membrane remodeling and trafficking pathway mediated by phosphoinositides. Earlier studies have showing the rescue of MTM1 myopathy by MTMR2 overexpression, emphasize the importance of maintaining the phosphoinositides equilibrium and highlight a potential compensatory mechanism amongst members of this pathway. This proved that the regulation of expression of these proteins involved in the membrane remodeling pathway may compensate each other's loss- or gain-of-function mutations by restoring the phosphoinositides equilibrium. This provides a potential therapeutic strategy for neuromuscular diseases resulting from mutations in the membrane remodeling pathway
Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders
MED27 is a subunit of the Mediator multiprotein complex, which is involved in transcriptional regulation. Biallelic MED27 variants have recently been suggested to be responsible for an autosomal recessive neurodevelopmental disorder with spasticity, cataracts and cerebellar hypoplasia. We further delineate the clinical phenotype of MED27-related disease by characterizing the clinical and radiological features of 57 affected individuals from 30 unrelated families with biallelic MED27 variants. Using exome sequencing and extensive international genetic data sharing, 39 unpublished affected individuals from 18 independent families with biallelic missense variants in MED27 have been identified (29 females, mean age at last follow-up 17 ± 12.4 years, range 0.1-45). Follow-up and hitherto unreported clinical features were obtained from the published 12 families. Brain MRI scans from 34 cases were reviewed. MED27-related disease manifests as a broad phenotypic continuum ranging from developmental and epileptic-dyskinetic encephalopathy to variable neurodevelopmental disorder with movement abnormalities. It is characterized by mild to profound global developmental delay/intellectual disability (100%), bilateral cataracts (89%), infantile hypotonia (74%), microcephaly (62%), gait ataxia (63%), dystonia (61%), variably combined with epilepsy (50%), limb spasticity (51%), facial dysmorphism (38%) and death before reaching adulthood (16%). Brain MRI revealed cerebellar atrophy (100%), white matter volume loss (76.4%), pontine hypoplasia (47.2%) and basal ganglia atrophy with signal alterations (44.4%). Previously unreported 39 affected individuals had seven homozygous pathogenic missense MED27 variants, five of which were recurrent. An emerging genotype-phenotype correlation was observed. This study provides a comprehensive clinical-radiological description of MED27-related disease, establishes genotype-phenotype and clinical-radiological correlations and suggests a differential diagnosis with syndromes of cerebello-lental neurodegeneration and other subtypes of 'neuro-MEDopathies'
Identification of Three Novel Mutations in the FANCA, FANCC, and ITGA2B Genes by Whole Exome Sequencing.
Background
Various blood diseases are caused by mutations in the FANCA, FANCC, and ITGA2B genes. Exome sequencing is a suitable method for identifying single-gene disease and genetic heterogeneity complaints.
Methods
Among families who were referred to Narges Genetic and PND Laboratory in 2015-2017, five families with a history of blood diseases were analyzed using the whole exome sequencing (WES) method.
Results
We detected two novel mutations (c.190-2A>G and c.2840C>G) in the FANCA gene, c. 1429dupA mutation in the FANCC gene, and c.1392A>G mutation in the ITGA2B gene. The prediction of variant pathogenicity has been done using bioinformatics tools such as Mutation taster PhD-SNP and polyphen2 and were confirmed by Sanger sequencing.
Conclusions
WES could be as a precise tool for identifying the pathologic variants in affected patient and heterozygous carriers among families. This highly successful technique will remain at the forefront of platelet and blood genomic research
Identification of the rs797045105 in the SERAC1 Gene by Whole-exome Sequencing in a Patient Suspicious of MEGDEL Syndrome
Introduction: Whole Exome Sequencing (WES) has been increasingly utilized in genetic determinants of various inherited diseases.
Methods: We applied WES for a patient presenting 3-Methylglutaconic Aciduria (MEG), Deafness (D), Encephalopathy (E), and Leigh-like (L) syndrome. Then Sanger sequencing was used for the detected variant validation.
Results: We found an insertion, rs797045105 (chr6, 158571484, C>CCATG), in the SERAC1 gene with homozygous genotype in the patient and heterozygous genotype in her unaffected parents. Notably, bioinformatics analysis using mutation taster (prob>0.99) and DDIGin (prob=86.51) predicted this mutation as disease-causing. Also, the variant was not present in our database, including 700 exome files.
Conclusion: These findings emphasize the pathogenicity of rs797045105 for MEGDEL syndrome. On the other hand, our data shed light on the significance of WES application as a genetic test to identify and characterize the comprehensive spectrum of genetic variation and classification for patients with neuro- metabolic disorders
Niemann-Pick Diseases; largest Iranian cohort with genetic analysis
Background: Niemann-Pick diseases (NPD) is an autosomal recessive inherited lysosomal lipid storage disorder which occurs due to a defect in cellular cholesterol trafficking, leading to excess lipid accumulation in multiple organ systems such as the brain, lungs, spleen and liver. SPMD1-associated disease includes classic infantile and visceral NPD type A and B respectively. Type C NPD is subacute or juvenile.Methods: Sanger sequencing of the candidate genes for NPD were performed followed by bioinformatic analysis to confirm the types of NPD and to identify novel mutations. All patients underwent full clinical assessment.Results: In this case series, we present two cases with NPD type A, six cases with NPD type B, and 11 cases with type C with various enzymatic defects identified in these cases. Within these 19 patients we present seven previously reported mutations and 10 novel mutations causing NPD.Conclusion: Our report demonstrates that NPD has a variable age of onset and can present early in life. In this study, we investigated the clinical and genetic manifestations of a large Iranian cohort. Understanding the variable presentation of NPD will allow for clinicians to have a high index of suspicion for the disease
Putative founder effect of Arg338* AP4M1 ( SPG50 ) variant causing severe intellectual disability, epilepsy and spastic paraplegia: Report of three families
info:eu-repo/semantics/inPres